AOD实践,modis数据下载,modis数据处理

该文详细介绍了如何处理MODIS数据,包括使用Cygwin下载NASA的遥感数据,使用MATLAB读取和处理HDF文件,对MOD04_L2数据进行重投影,以及进行图像拼接和均值计算的过程。涉及的工具包括ENVI、IDL和批处理脚本。
摘要由CSDN通过智能技术生成

modis数据下载-数据读取-重投影-拼接-均值

一、数据下载

1、Cygwin安装

Cygwin安装教程:https://blog.csdn.net/u010356768/article/details/90756742

1.2 数据采集

现提供遥感数据下载服务,主要是NASA数据,数据下载网站包括:

LAADSDAAC: https://ladsweb.modaps.eosdis.nasa.gov/
href="https://ladsweb.modaps.eosdis.nasa.gov/search/

EarthData: https://search.earthdata.nasa.gov/

2、C下载

使用Cygwin批量下载卫星数据,以MODIS数据为例
打开Cygwin64 Terminal,依次输入如下命令,每行命令输完点回车。
1、cd G:\trydata\data\
将路径切换至.sh文件所在的文件夹。斜体改为你自己存放.sh文件的路径。
2、chmod 777 5386246296-download.sh
将.sh文件变为可执行文件。斜体改为你自己的.sh文件名。
3、./5386246296-download.sh
执行.sh文件。./后的斜体改为你自己的.sh文件名。
输入Username和password,即EARTHDATA的用户名和密码,注意输入密码的时候窗口不会显示,输完直接点回车即可。

3、谷歌浏览器扩展下载

在Chrome网上应用商店下载Chrono插件
在这里插入图片描述

二、hdf数据读取(MATLAB)

hdr = read_envihdr('****.hdr');
Image = multibandread('****.dat',hdr.size,[hdr.format '=>double'],hdr.header_offset,hdr.interleave,hdr.machine);

如何从气溶胶产品MOD04提取550nm处的气溶胶厚度

如果做数据处理,最好直接写程序去做。matlab中有现成的子程序,hdftool,你可以点击需要输入的参数,下面接着会有输入语句的书写方法,你就照着写到.m文件中做循环就可以了。如果想看数据的内部情况也可以用hdfview
mod04的气溶胶数据都是块状分布,且每天不同时段的都是一个hdf文件,用matlab的hdftool读取某一个hdf文件我可以,但请问如何
将同一天不同时段的数据融合在一起生成逐日的数据?然后如何转换成带坐标系的tiff格式?
假如数据存放的地址为fpath = ‘E:\MODIS’;
file = dir([fpath ‘*.hdf’]); % 得到所有要读文件的名称
for i =1:numel(file)
data = []; %预设的要读取的变量名
fn = [fpath file(i,1).name];
% 下面就可以读取变量了
data = hdfread(fn,……);
save([outpath matfn],‘data’); % outpath 为输出的文件地址 matfn是你想存成的文件名,此时存储的是mat文件
end

三、MOD04_L2批处理之重投影

MCTK手动应用

请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述

批处理

pro modis_mctk
  compile_opt idl2
  e=envi(/headless)
  
  fn= dialog_pickfile(title="open the mod04 data",/directory) ;打开数据目录
  output_location = 'D:\data\data1\' ;输出路径
  files=file_search(fn,"*.hdf",count=nums)
  bridges = mctk_create_bridges()
  
  for i=0,nums-1 do begin ;每一个影像进行处理
    modis_swath_file=files[i]
    basename=file_basename(files[i]) ;获取输入影像文件名
    output_rootname=strmid(basename,0,32) ;获取指定范围名字
    swath_name = 'mod04';这个值自己根据自己数据设置,用hdfviewer打开后,会显示
    sd_names = ['AOD_550_Dark_Target_Deep_Blue_Combined'] ;;这是数据集名称,是一个字符串数组
    ;  以下参数需要自己去看文档,一般保持不变 。官方地址:https://github.com/dawhite/MCTK
    out_method = 1
    output_projection = envi_proj_create(/geographic)
    interpolation_method = 0
    print,output_rootname
    
    convert_modis_data, in_file=modis_swath_file, $
      out_path=output_location, out_root=output_rootname, $
      swt_name=swath_name, sd_names=sd_names, $
      out_method=out_method, out_proj=output_projection, $
      interp_method=interpolation_method, /no_msg, $
      r_fid_array=r_fid_array, r_fname_array=r_fname_array, $
      bridges=bridges, msg=msg
  endfor
  mctk_destroy_bridges, bridges
end

四、MOD04_L2批处理之拼接

1、MODIS图像批量镶嵌拼接方法(IDL/ENVI)

(不会,有会得教教我!!!)

2、ENVI mosaic

2.1手动

【ENVI入门系列】09.图像镶嵌:http://blog.sina.com.cn/s/blog_764b1e9d0102v1p9.html
ENVI5.1无缝镶嵌工具(具体功能)
文件选择
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.2二次开发——拼接

PRO MOSAIC_BATCH
  COMPILE_OPT IDL2
  ; 启动ENVI 5.1
  e = ENVI()

  fn= dialog_pickfile(title="Select input scenes",/directory) ;打开数据目录
  files=file_search(fn,"*.dat",count=nums)
  ; output_location = 'D:\data\outdata3\' ;输出路径


  scenes = !NULL
  ; 将每一个Raster放在一个Scenes中
  FOR i=0, N_ELEMENTS(files)-1 DO BEGIN
    basename=file_basename(files[i]) ;获取输入影像文件名
    name=strmid(basename,0,20) ;获取指定范围名字
    
    for n=0, 12 do begin
      m=i+n
      basename_1=file_basename(files[m]) ;获取输入影像文件名
      name_1=strmid(basename_1,0,20) ;获取指定范围名字
      print,basename_1
      if name_1 ne name then break
      raster = e.OpenRaster(files[m])
      scenes = [scenes, raster]
    endfor
    i=m-1
 
  ; 创建ENVIMosaicRaster对象
  mosaicRaster = ENVIMosaicRaster(scenes,$
    background = -999,$
    color_matching_method = 'histogram matching',$
    color_matching_stats = 'overlapping area',$
    feathering_distance = 20,$
    feathering_method = 'seamline',$
    resampling = 'bilinear',$
    seamline_method = 'none')
    

;  newFile = ENVI_PICKFILE(title='Select output file', $ /output)
;  IF FILE_TEST(newFile) THEN FILE_DELETE, newFile

    ; 设置输出路径
   output_location = 'G:\NDVI\mosaic\' + name + '.dat' ;输出路径
   IF FILE_TEST(output_location) THEN FILE_DELETE, output_location 
    ; 输出镶嵌结果
  mosaicRaster.Export, newFile, 'ENVI'

 ENDFOR
END

五、裁剪

app商店下载安装批处理工具包
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

六、均值计算

pro modis_swath_average
  start_time= systime(1)
  input_directory= 'D:\study\AOD\Mosaicdata1\'
  output_directory=input_directory
  file_list=file_search(input_directory,'*.tif');路径

  file_n=n_elements(file_list)
  output_resolution=0.03 ;像元分辨率
  output_name=output_directory+'avr.tif'
  ;结果
  print,file_n
  ;循环,读图像信息:经纬度
  lon_min=9999.0
  lon_max=-9999.0
  lat_min=9999.0
  lat_max=-9999.0
  for file_i=0,file_n-1 do begin
    data=read_tiff(file_list[file_i],geotiff=geo_info)
    data_size=size(data)
    data_col=data_size[1]
    ;范围:最大
    data_line=data_size[2]
    resolution_tag=geo_info.(0)
    geo_tag=geo_info.(1)
    temp_lon_min=geo_tag[3]
    temp_lon_max=temp_lon_min+data_col*resolution_tag[0]
    temp_lat_max=geo_tag[4]
    temp_lat_min=temp_lat_max -data_line*resolution_tag[1]

    if temp_lon_min lt lon_min then lon_min=temp_lon_min
    if temp_lon_max gt lon_max then lon_max=temp_lon_max
    if temp_lat_min lt lat_min then lat_min=temp_lat_min
    if temp_lat_max gt lat_max then lat_max=temp_lat_max
  endfor

  ;经纬度数据存储
  data_box_geo_col=ceil((lon_max-lon_min)/output_resolution)
  data_box_geo_line=ceil((lat_max-lat_min)/output_resolution)
  data_box_geo_sum=fltarr(data_box_geo_col,data_box_geo_line)
  data_box_geo_num=fltarr(data_box_geo_col,data_box_geo_line)


  ;逐像元循环位置
  for file_i=0,file_n-1 do begin
    print,file_list[file_i]
    data=read_tiff(file_list[file_i],geotiff=geo_info)
    data_size=size(data)
    data_col=data_size[1]
    data_line=data_size[2]
    resolution_tag=geo_info.(0)
    geo_tag=geo_info.(1)
    temp_lon_min=geo_tag[3]
    temp_lat_max=geo_tag[4]

    for data_col_i=0,data_col-1 do begin
      for data_line_i=0,data_line-1 do begin
        temp_lon=temp_lon_min+data_col_i*resolution_tag[0]
        temp_lat=temp_lat_max-data_line_i*resolution_tag[1]
        data_box_col_pos=floor((temp_lon-lon_min)/output_resolution)
        data_box_line_pos=floor((lat_max-temp_lat)/output_resolution)

        if (data[data_col_i,data_line_i]eq 0.0)then continue
        data_box_geo_sum[data_box_col_pos,data_box_line_pos]=data_box_geo_sum[data_box_col_pos,data_box_line_pos]+data[data_col_i,data_line_i]
        data_box_geo_num[data_box_col_pos,data_box_line_pos]=data_box_geo_num[data_box_col_pos,data_box_line_pos]+1.0
      endfor
    endfor


    ;col_start=floor((temp_lon_min-lon_min)/output_resolution)
  ;  line_start=floor((lat_max-temp_lat_max)/output_resolution)
  ;  data_box_geo_sum[col_start:col_start+data_col-1,line_start:line_start+data_line-1]+=data
  ;  data_box_geo_num[col_start:col_start+data_col-1,line_start:line_start+data_line-1]+=(data gt 0.0)

  endfor

  data_box_geo_num=(data_box_geo_num gt 0.0)*data_box_geo_num+(data_box_geo_num eq 0.0)
  data_box_geo_avr=data_box_geo_sum/data_box_geo_num

  geo_info={$
    MODELPIXELSCALETAG:[output_resolution,output_resolution,0.0],$
    MODELTIEPOINTTAG:[0.0,0.0,0.0,lon_min,lat_max,0.0],$
    GTMODELTYPEGEOKEY:2,$
    GTRASTERTYPEGEOKEY:1,$
    GEOGRAPHICTYPEGEOKEY:4326,$
    GEOGCITATIONGEOKEY:'GCS WGS_1984',$
    GEOGANGULARUNITSGEOKEY:9102,$
    GEOGSEMIMAJORAXISGEOKEY:6378137.0,$
    GEOGINVFLATTENINGGEOKEY:298.25722}

  write_tiff,output_name,data_box_geo_avr,geotiff=geo_info,/float
  end_time=systime(1)
  print,'Time consuming: '+strcompress(string(end_time-start_time))
end

hdr转TIFF

在这里插入图片描述

七、tiff数据读取

[A,R] = geotiffread(filename)

将UCAS-AOD数据集转换为YOLO格式的步骤如下: 1. 下载UCAS-AOD数据集并解压缩。 2. 创建一个新文件夹,用于存放转换后的数据集。 3. 在UCAS-AOD数据集的根目录下,创建一个名为“labels”的文件夹,用于存放图像的标签。 4. 使用标注工具(如LabelImg)标注UCAS-AOD数据集中的图像,并将标签文件保存在“labels”文件夹中。 5. 在UCAS-AOD数据集的根目录下,创建一个名为“images”的文件夹,用于存放图像文件。 6. 将标注后的图像文件(.jpg或.png)复制到“images”文件夹中。 7. 创建一个名为“classes.names”的文本文件,用于存放目标类别的名称。 8. 将UCAS-AOD数据集中的目标类别名称按照顺序逐行写入“classes.names”文件中。 9. 创建一个名为“train.txt”的文本文件,用于存放训练集图像的文件路径。 10. 将“images”文件夹中的所有图像文件的路径按照顺序逐行写入“train.txt”文件中。 11. 使用脚本将UCAS-AOD数据集转换为YOLO格式。 12. 将转换后的数据集文件夹中的所有文件(包括“images”文件夹、“labels”文件夹、“train.txt”文件和“classes.names”文件)复制到YOLO模型的数据集文件夹中即可。 注意:YOLO模型要求的标签格式为“class_index x_center y_center width height”,其中class_index为目标类别的索引(从0开始),x_center和y_center为目标中心点在图像中的相对坐标(范围为0-1),width和height为目标框的相对宽度和高度(也是范围为0-1的值)。因此,在转换UCAS-AOD数据集时,需要将标签文件中的坐标值进行归一化处理。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值