D:数三角 (暴力枚举,判断钝角三角形)

本文介绍了一种算法,用于计算由n个点组成的集合中可以形成多少个钝角三角形。通过暴力枚举所有可能的三角组合,并利用勾股定理的逆定理来判断是否构成钝角三角形,最终输出钝角三角形的数量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

2020牛客寒假算法基础集训营2

传送门

题意:

n个点,问任意选三个点组成的三角形,有多少个是钝角三角形

分析:

n<=500,数据小,直接暴力枚举即可
判断是钝角三角形的条件
设三角形三边为a,b,c,c为最长边,如果a^2 +b^2< c^2,则为钝角三角形

代码:

#include <iostream>
#include <stdio.h>
#include <algorithm>
#include <string.h>
#include <vector>
#include <math.h>
#include <map>
#include <queue>
#include <set>
#define Pll make_pair
using namespace std;
typedef long long ll;
const int maxn=2e5+50;
const int inf=0x3f3f3f3f;
//const int mod=1e9+7;
const int phi=1e9+6;
const ll M=1e18+7;
struct sa{
    int x;
    int y;
}p[600];
double dis(int a,int b,int c,int d){//两点的边长
    return sqrt((a-c)*(a-c)+(b-d)*(b-d));
}
double diss(int a,int b,int c,int d){//两点的边长的平方
    return (a-c)*(a-c)+(b-d)*(b-d);
}
int main()
{
    int n;
    scanf("%d",&n);
    for(int i=1;i<=n;i++){
        scanf("%d%d",&p[i].x,&p[i].y);
    }
    ll ans=0;
    for(int i=1;i<=n-2;i++)
        for(int j=i+1;j<=n-1;j++)
            for(int k=j+1;k<=n;k++){
                double p1=dis(p[i].x,p[i].y,p[j].x,p[j].y);
                double p2=dis(p[i].x,p[i].y,p[k].x,p[k].y);
                double p3=dis(p[k].x,p[k].y,p[j].x,p[j].y);
                //cout<<p1<<" "<<p2<<" "<<p3<<endl;
                if(p1+p2>p3&&p2+p3>p1&&p1+p3>p2){
                    double ppp[5];
                    double p4=diss(p[i].x,p[i].y,p[j].x,p[j].y);
                    double p5=diss(p[i].x,p[i].y,p[k].x,p[k].y);
                    double p6=diss(p[k].x,p[k].y,p[j].x,p[j].y);
                    ppp[1]=p4,ppp[2]=p5,ppp[3]=p6;
                    //cout<<ppp[1]<<" "<<ppp[2]<<" "<<ppp[3]<<endl;
                    sort(ppp+1,ppp+4);

                    if(ppp[3]>ppp[1]+ppp[2])
                        ans++;
                }
            }
    printf("%lld\n",ans);
}
/*
3
0 0
1 0
0 1
 */
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值