07 自动求导

# 对函数 y=2X^(T)X 关于列向量X求导
import torch

x = torch.arange(4.0)
x
tensor([0., 1., 2., 3.])
# 存储梯度
x.requires_grad_(True)
x.grad # 默认值是None
y = 2 * torch.dot(x, x)
y
tensor(28., grad_fn=<MulBackward0>)
y.backward()
x.grad
tensor([ 0.,  4.,  8., 12.])
x.grad == 4 * x 
tensor([True, True, True, True])
# 在默认情况下,PyTorch会累积梯度,我们需要清除之前的值
x.grad.zero_()
y = x.sum()
y.backward()
x.grad
tensor([1., 1., 1., 1.])
# 深度学习中,我们的目的不是计算微分矩阵,而是批量中每个样本单独计算的偏导数之和
x.grad.zero_() # 梯度清零
y = x * x  # x是向量,y是向量,向量的函数
x, y  # tensor(【0., 1., 2., 3.】, requires_grad=True),    tensor(【0., 1., 4., 9.】, grad_fn=MulBackward0)
y.sum().backward() # 等价于y.backward(torch.ones(len(x)))
x.grad
tensor([0., 2., 4., 6.])

x = torch.arange(4.0,requires_grad=(True))

x.grad.zero_() # 梯度清零

y = x * x # y 求和后变成标量14,似乎torch无法对向量求导

y.sum().backward() #y.sum()实现的是 y = x1²+x2²+x3²

print(x.grad==2*x) # backward()实现的是dy/dx1=2x1…

# 将某些计算移动到记录的计算图之外
x.grad.zero_()
y = x * x
u = y.detach() # 从计算图中分离,也就是说无法再对低层的变量进行反向传播求导了 u不再是x的函数
# 使用的场景:loss求导,反向传播 (目前未了解)
z = u * x

z.sum().backward()
x.grad == u
tensor([True, True, True, True])
x.grad.zero_()
y.sum().backward()
x.grad == 2 * x
tensor([True, True, True, True])
# 即使构建函数的计算图需要通过Python控制流(例如,条件、循环、或任意函数调用),我们仍然可以计算得到的变量的梯度
def f(a):
    b = a * 2
    while b.norm() < 1000:
        b = b * 2
    if b.sum() > 0:
        c = b
    else:
        c - 100 *  b
    return c

a = torch.randn(size=(), requires_grad=True)
d = f(a)
d.backward()

a.grad == d / a
tensor(True)
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值