MATLAB 核密度估计 Kernel Density Estimation (KDE)

本文介绍了如何使用MATLAB进行核密度估计,通过标准正态核函数和AMISE规则选择带宽,实现对样本数据分布的非参数估计。通过实例展示,展示了高斯核密度估计在还原样本分布中的效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

对于已经得到的样本集,核密度估计是一种可以求得样本的分布的概率密度函数的方法:

通过选取核函数和合适的带宽,可以得到样本的distribution probability,在这里核函数选取标准正态分布函数,bandwidth通过AMISE规则选取

具体原理及定义:传送门 https://en.wikipedia.org/wiki/Density_estimation

MATLAB 代码实现如下:

% Kernel Density Estimation
% 只能处理正半轴密度
function [t, y_true, tt, y_KDE] = KernelDensityEstimation(x)
% clear

% x = px_last;
% x = px_last_tu;
%%
%参数初始化
Max = round(max(x));           %数据中最大值
Min = round(min(x));           %数据中最小值
Ntotal = length(x);     %数据个数
tt = 0 : 0.1 : Max;     %精确x轴
t = 0 : Max;            %粗略x轴

y_KDE = zeros(10 * Max+1, 1);   %核密度估计值
sum1 = 0;                       %求和的中间变量
%%
%计算带宽h
R = 1/(2*sqrt(pi));
m2 = 1;
h = 3;
% h = (R)^(1/5) / (m2^(2/5) * R^(1/5) * Ntotal^(1/5));

%%
%计算核密度估计
for i = 0 : 0.1 : Max        
    for j = 1 : Ntotal
        sum1 = sum1 + normpdf(i-x(j));
    end
    y_KDE(round(i*10+1)) = sum1 / (h * Ntotal);
    sum1 = 0;
end

sum2 = sum(y_KDE)*0.1;  %归一化KDE密度
for i = 0 : 0.1 : Max
    y_KDE(round(i*10+1)) = y_KDE(round(i*10+1))/sum2;
end

%%
%计算真实密度的分布
y_true = zeros(Max+1,1);   
for i = 0 : Max
    for j = 1 : Ntotal
        if (x(j) < i+1)&&(x(j) >= i)
            y_true(i+1) = y_true(i+1) + 1;
        end
    end
    y_true(i+1) = y_true(i+1) / Ntotal;
end

%%
%绘图

% figure(1)           %真实密度的分布图象
% bar(t, y_true);
% axis([Min Max+1 0 max(y_true)*1.1]);
% 
% figure(2)           %核密度估计的密度分布图象
% plot(tt, y_KDE);
% axis([Min Max 0 max(y_true)*1.1]);

  

高斯核密度估计,求出概率密度分布函数

用于计算样本数据的非参数核密度估计

给定测试数据:

data = [1,2,3,4,5,2,1,2,4,2,1,4,7,4,1,2,4,9,8,7,10,1,2,3,1,0,0,3,6,7,8,9,4]

样本的条形统计图和KDE密度分布图分别如下,可以看到KDE可以较好的还原样本的分布情况:

真实概率分布图

KDE密度分布图

### 回答1: 核密度估计是指通过对一个数据集进行平滑处理来估计该数据集的概率密度函数。在matlab中,我们可以使用“ksdensity”函数来进行核密度估计。此函数可以接受多种核函数,包括高斯核函数和Epanechnikov核函数。以下是一个关于如何使用ksdensity函数的matlab代码示例: 数据模拟 要真正使用核密度估计,我们需要一组数据。我们可以使用rand函数来生成服从正态分布的数据集,代码如下所示: data = randn(1,1000); 核密度估计 一旦我们有了数据集,我们就可以使用ksdensity函数对其进行核密度估计。首先,我们需要调用ksdensity函数,并将数据集传递给它作为输入。然后,该函数会计算给定数据的概率密度估计,并将其存储在一个向量中。我们可以使用plot函数来绘制概率密度估计的图形,并使用title和xlabel函数添加标题和标签。以下是代码示例: [f,xi] = ksdensity(data); plot(xi,f); title('核密度估计'); xlabel('x'); 该函数还可以使用其他输入参数来自定义核函数类型和带宽大小。带宽控制着平滑度。较小的带宽会更加突出数据的细节,而较大的带宽会更加平滑数据。如果没有手动指定带宽,则算法会根据数据集的大小和分布自动选择一个相应的带宽大小。 总结 通过使用matlab的“ksdensity”函数,可以进行核密度估计并快速可视化概率密度估计的结果。这是一种强大而广泛使用的统计技术,在机器学习、信号处理和数据分析等领域中都得到了广泛的应用。 ### 回答2: 核密度估计 (Kernal density estimation, KDE) 是估计概率密度函数的一种非参数方法,它基于对样本数据的数据分布进行连续的估计,通过设置一个宽度参数(核带宽),对每个观测值周围进行加权,从而获得连续的概率密度函数估计值。 在Matlab中,可以使用kde函数进行核密度估计,其使用方法如下: 1. 假设有样本数据x,使用以下代码得到核密度估计函数: [f,xi] = ksdensity(x) 其中,f为得到的概率密度函数估计值,xi为对应的横坐标值。 2. 设置bandwidth参数来调整带宽大小,可以使用以下代码: [f,xi] = ksdensity(x,'bandwidth',h) 其中,h为设置的带宽大小。 3. 使用plot函数可视化得到的概率密度函数估计值,例如: plot(xi,f) 4. 还可以使用histogram函数和kde函数结合使用,进行直方图与核密度估计的双重可视化,例如: histogram(x,'Normalization','probability') hold on [f,xi] = ksdensity(x); plot(xi,f,'LineWidth',2) hold off 以上就是Matlab中实现核密度估计的基本方法和代码,通过合理设置参数和可视化方式,可以更好地理解样本数据的概率密度分布情况,从而进行更进一步的分析。 ### 回答3: 核密度估计Kernel Density EstimationKDE)是一种利用样本数据来估计目标概率密度的非参数方法。Matlab提供了相应的函数,例如kde和ksdensity。 以下是一个简单的Matlab代码示例: 首先,我们生成一个随机样本数据。 ```matlab sample_data = randn(1, 1000); ``` 然后,使用ksdensity函数进行核密度估计,并指定核函数类型和带宽大小等参数。 ```matlab [f, xi] = ksdensity(sample_data, 'Kernel', 'epanechnikov', 'Bandwidth', 0.8); ``` 其中,f是估计的概率密度函数值,xi是生成的密度函数点。 最后,我们可以使用plot函数将概率密度函数绘制出来。 ```matlab plot(xi, f, 'LineWidth', 2, 'Color', 'r'); ``` 通过以上步骤,我们可以生成并绘制出核密度估计的概率密度函数。根据具体情况,可以调整核函数和带宽等参数,以获得更准确的估计结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值