更多参考公众号:优享智库,来源网络旨在交流分享,如有侵权,联系速删。
一、建设目标
本次建设目标为:利用云计算技术打造高校大数据分析、高性能应用等高校科研基础平台。
云计算资源中心建设后,将包括云计算虚拟化中心、大数据分析、和高性能计算中心,并为此三个中心提供统一管理平台。通过云计算资源中心的建设,物理资源将被组织起来统一调配和供应,提供给学校各学院、部门、教师及学生使用。并且通过云数据中心为学校提供大数据分析和高性能计算服务。通过资源集中化,资源的共享得以实现,应用在资源之间的迁移也成为可能。当资源集中后,对于相同资源进行管理的代价将大幅度降低,而资源的使用率将成倍提升。从而解决数据中心当前面临的问题,更有效地推动信息化的发展。
基于云计算的大数据和高性能中心建设目标主要有以下几个方面:
1、资源纬度集约化。通过虚拟化方式,为各学院、部门和师生提供基础计算服务和数据存储。
2、数据纬度一体化。方便数据共享,为大规模数据整合和交换提供可能。
3、管理纬度服务化。利用云计算方式,实现基础软硬件资源的统一管理、按需分配、综合利用,降低各部门系统建设成本和日常运行维护费用。
高校数字校园云计算平台建设着重点为:提供IAAS服务的服务器虚拟化中心,提供校园师生教学办公用的校园云盘中心和提供高性能计算服务的高性能计算中心。
二、 数据中心总体规划
云资源中心加大数据分析与高性能主要分为计算资源、内存资源、存储资源、网络资源,大数据分析系统,高性能作业调度系统,本项目在充分整合高校数据中心资源的基础上,配置必要软硬件设备,为高校信息系统提供统一的基础设施服务,在IaaS层构建较为完整的高校云计算平台。建设内容包括以下几部分:
硬件设备:服务器、存储、、SAN交换机、交换机、负载均衡、VPN网关。
软件设备:物理服务器和虚拟服务器的操作系统、虚拟化软件、中间件、大型数据库系统、云计算管理平台、Hadoop组件、高性能管理软件、高性能作业调度软件、高性能集群存储系统。
安全系统:防火墙、入侵防御、防毒墙、网页防篡改、身份认证系统、运维安全审计系统、数据库安全审计系统、漏洞扫描系统。同时采购专业机构提供的云安全服务等。
机房配套设备:UPS、精密空调、标准机架。
数据中心总体部署架构
三、云数据中心建设规划
云数据中心建设规划
云设施即服务(IaaS,Cloud Infrastructure as a Service):系统供应商可以向用户提供同颗粒度的可度量的计算、存储、网络和单机操作系统等基础资源,用户可以在之上部署或运行各种软件,包括客户操作系统和应用业务。
云平台即服务 (PaaS,Cloud Platform as a Service):云计算平台供应商将业务软件的开发环境、运行环境作为一种服务,通过互联网提交给用户。云平台即服务,需要构建在云基础设施之上。用户可以在云平台供应商提供的开发环境下创建自己业务应用,而且可以直接在云平台的运行环境中上运营自己的业务。
云软件即服务(SaaS,Cloud Software as a Service ):运营商通过互联网,向用户提供软件服务的一种软件应用模式。传统的SaaS与云SaaS,在客户体验上基本类似,如新浪邮箱和Gmail邮箱,客户感受是类似的。但传统的SaaS直接构建在硬件设备之上,不能实现后台资源的多租户共享,也无法实现资源的动态流转,实际并不属于云计算的范畴。云SaaS,要求这些软件业务运行在云平台服务层或构建在云基础设施层之上。云SaaS的优势,体现在后台资源的动态伸缩和流转上,资源可扩展性更强,这一重大优势是传统SaaS所不具备的。
四、大数据平台规划
本次计划将分散在网络中的数据归集起来,为分析机构提供数据提取和查询服务;本项目计划实现网络信息的综合查询与分析,实现综统报表、监管报表、业务日报表、综合报表的信息共享;信息预警系统,实现网络信息的联动查询统计。
通过建立逻辑数据模型,并建立适合各类专题分析需要的数据集市,形成企业级中央数据仓库,以中央数据仓库为纽带完成业务数据向管理信息的过渡;
大数据平台规划
五、大数据架构介绍
本次大数据平台系统包括硬件、操作系统层和软件层三部分。
大数据架构