原文《数据治理服务解决方案及应用案例》PPT格式,主要从数据治理/资产管理的必要性、数据治理/资产管理的总体设计思路、数据治理实施方法论、数据治理应用实施方法论、元数据管理产品功能架构、数据标准管理产品、数据质量管理产品、相关数据治理案例等进行建设。本文仅对主要内容进行介绍。
来源网络公开渠道,旨在交流学习,如有侵权联系速删,更多参考公众号:优享智库
简单来说,数据治理就是组织内部对数据使用的一整套管理行为。它的核心目的是制定和实施一系列政策和流程,以指导企业如何管理和利用内部数据。
首先,它是企业实现数字战略的基础。在这个数字化的时代,数据已经成为企业的核心资产。通过有效的数据治理,企业可以确保数据的质量、安全性和合规性,从而充分发挥数据的价值。同时,数据治理还能促进数据驱动的业务创新和发展,为企业带来更大的竞争优势。
这个框架由四个关键部分组成:组织架构、制度规范、技术工具和评估改进。
首先,我们需要建立一个数据治理组织,明确各级的职责和角色,为数据治理提供坚实的组织保障。这就像是一个大家庭,每个人都有自己的位置和职责,大家共同努力,才能让家庭运转顺利。
其次,我们需要制定数据治理的相关政策和流程。这些政策和流程就像是一盏指路明灯,指导我们如何进行数据治理活动,确保所有工作都能规范化和有效化。
再次,技术工具在数据治理中也起着举足轻重的作用。通过使用先进的数据治理工具和技术,我们可以大大提高数据治理的效率和效果,让数据治理变得更加轻松和高效。
最后,我们不能忽视评估改进的重要性。我们需要建立一个数据治理评估机制,定期对治理效果进行评估,找出存在的问题和不足,然后持续改进和优化数据治理体系。这就像是一个不断自我完善的过程,让我们的数据治理体系更加完善、更加成熟。
一、数据治理/资产管理的必要性
- 有数据治理/资产管理诉求的企业:是那些拥有大量数据的企业
- 拥有大量数据的企业势必会:内部开放数据使用权支持企业精细化管理,对外开放数据共享实现资产变现
- 数据治理/资产管理就是:管理从数据产生到使用端到端过程中的数据定义、格式、业务规则、加工依赖、安全等一系列事项
二、数据治理/资产管理的总体设计思路
按照数据治理/资产管理建设的最新理念和思路,整体上要实现“业务数据化à数据资产化à资产服务化à服务价值化”的“四化”建设,并通过制度化建立长效保障机制。
三、数据治理/资产管理的需求
1、对内管理
企业的IT系统经历了数据量高速膨胀的时期,这些海量的、分散在不同角落的数据导致了数据资源利用的复杂性和管理的高难度。企业无法从统一的业务视角去概览整个企业内部的数据信息。
2、对外管理
数据是企业的生命线,谁掌握了准确的数据谁就获得了先机。在当前竞争日益激烈的市场上,企业都在不同的细分市场上争夺优质客户。只有基于准确的数字,才能够帮助企业在激烈的竞争中取得竞争优势。
3、市场创新
企业在市场中的竞争领域已经从同一领域市场份额争夺,发展到开发新竞争领域的创新性竞争阶段,需要在业务数据的开发和利用基础上进行创新,数据为企业实施有效的创新提供了丰富强大的动力。
三、数据治理应用实施方法论
数据治理三要素-实施必不可或缺的三要素
1、组织架构
高层领导关注,关注关键环节,掌控全局;接口和实施人员分工明确,责任清晰。
2、流程制度
完善制度、规范流程、系统硬控制,把好“数据流转”关。
3、技术支撑
操作自动化,全流程工具支撑,解放人力。
四、数据治理实施方法论
技术支撑能力建设上,元数据管理和应用是核心。
Ø数据标准管理:规范数据定义,促进数据集成与共享
Ø元数据管理:建立企业信息资产索引,辅助开发和运维
Ø数据质量管理:提供有效的数据质量发现、管理及处理机制
五、大数据时代的自动化企业元数据管理平台
元数据为企业建立元数据管理体系提供了可靠、便捷的工具支持。帮助企业绘制数据地图、统一数据口径、标明数据方位、分析数据关系、管理模型变更。从而更加有效的发掘和利用信息资产的价值,实现精准高效的分析和决策,推进系统变更管理,降低项目风险。
•支持CWM(公共仓库元模型)规范:
Web开发技术,Native应用体验。
•自动获取和关联元数据:自动化获取Oracle、DB2、Erwin、Datastage、PowerCenter、Erwin、PowerDesigner 等元数据。
•强大的分析功能:提供多种分析能力,包括血统分析,影响分析,全链分析,同时提供全企业的数据地图。
•多粒度的分析结果展现:为用户提供多视角的分析结果展现,实现分析结果数据的细粒度展现到粗粒度展现的切换。
•全企业的信息地图
•支持大数据的元数据采集与分析展示