本文为大型集团提供了全面的数据治理规划蓝图、技术架构和IT信息化顶层设计方案。通过构建企业级数据中心,实现数据的集中管理和高效利用,提升数据质量,支持企业决策和业务运营。同时,文件还详细阐述了数据治理的实施方法论和风险防范措施,为企业的数据治理项目提供了有力的指导和支持。
1.数据治理概述:
数据治理概念:解释了数据治理与数据管理的区别,强调了数据治理在企业中的核心位置。
数据在企业中的价值:展示了数据如何从原始状态转化为信息和知识,进而支持企业智慧决策的过程。
2. 数据治理规划蓝图:
静态数据中心示例:通过人员数据和螺母数据的例子,展示了静态数据中心如何整合和管理企业内的各种数据。
数据管理与数据治理的区别:将两者比作中医与西医,分别代表长期管控和短期梳理的不同策略。
3. 企业数据治理的核心位置:
治理框架:阐述了数据治理在公司治理、IT治理和业务流程中的核心作用。
业务系统支持:列出了数据治理如何支撑企业关键业务及未来业务系统建设的要求。
4. 企业数据治理的范围与目标:
治理范围:明确了企业数据治理涵盖静态数据、交易数据和分析数据。
治理目标:详细列出了数据治理的多个目标,包括实现数据标准化、提高数据质量、支持数据共享等。
5. 信息化顶层设计与技术架构:
顶层设计内容:包括技术架构规划、环境保障规划、数据分析、信息资源规划等。
企业级数据中心构建:讨论了如何构建企业级数据中心,以及静态数据中心的标准运行机制。
6.数据治理实施策略:
实施方法论:提出了数据治理项目的实施步骤,包括确立标准体系、数据治理平台实施、标准化体系建设等。
风险管理:识别了数据治理过程中可能遇到的风险,并提出了相应的规避策略。
7.数据治理平台与部署架构:
平台功能:介绍了数据治理平台的主要功能,如数据编码管理、数据建模、元数据管理等。
部署架构:展示了数据治理平台的部署架构,包括下级单位与总部的数据治理平台连接。
8. 数据治理的意义与现状评估:
治理意义:阐述了数据治理对企业的重要性,包括提高决策精度、降低风险等。
现状评估:对企业当前的数据管理现状进行了全面评估,指出了存在的问题和差距。
9. 数据治理的具体措施:
数据清洗与协同:讨论了如何通过数据清洗实现数据质量的提升,以及如何通过数据协同管理机制确保数据源的准确性。
二维码库与360度数据信息:提出了利用二维码库和360度数据信息来加速数据识别和优化数据管理。