大型集团数据治理规划蓝图、技术架构及IT信息化顶层设计的综合解决方案

本文为大型集团提供了全面的数据治理规划蓝图、技术架构和IT信息化顶层设计方案。通过构建企业级数据中心,实现数据的集中管理和高效利用,提升数据质量,支持企业决策和业务运营。同时,文件还详细阐述了数据治理的实施方法论和风险防范措施,为企业的数据治理项目提供了有力的指导和支持。

 

143b94072e35d31d6c4731a475c58511.jpeg

1.数据治理概述:

数据治理概念:解释了数据治理与数据管理的区别,强调了数据治理在企业中的核心位置。

数据在企业中的价值:展示了数据如何从原始状态转化为信息和知识,进而支持企业智慧决策的过程。

 

57441bd3cdc88180645b651957d66a41.jpeg

 

13188de34719295fb5ec4c733682332c.jpeg

 

9159601db2bdcc85e8402bcef70b15a3.jpeg

 

2a3951b584f1f1c64899325a1f853df9.jpeg

 

a996d1a4b3478d0315fd56b78e58679b.jpeg

 

1496c38701607baefed0db5d451013fa.jpeg

 

98b1d4aa81ae4a6f851298fe7343232b.jpeg

 

6fe5bc8567390fbfaf1775fdf1bf6e5e.jpeg

 

92049eb541e1e69a5fa6ff43389ebade.jpeg

 

6e69e3d43b7297af8b2bcac32bd6df3d.jpeg

 

4253c4b4d694c03ef97661a96339d698.jpeg

 

b52dff5e5f77cc86b273333acd222f34.jpeg

 

99cfe83d5243e8e657892fa96a4d38a1.jpeg

 

f4c085123c6da8990c1ca4979690e52d.jpeg

 

d25cf25f310fb07c6fe4f59430d83bd6.jpeg

 

ed5d4532977b64df6c138ffcad0ddf65.jpeg

 

1ae3ae687dd293b564d2a63194a45b7d.jpeg

2. 数据治理规划蓝图:

静态数据中心示例:通过人员数据和螺母数据的例子,展示了静态数据中心如何整合和管理企业内的各种数据。

数据管理与数据治理的区别:将两者比作中医与西医,分别代表长期管控和短期梳理的不同策略。

 

8208a21aa0626f60a5ebf6354994aba8.jpeg

 

8013fe9d523b107092759128fb25d162.jpeg

 

4aafa58222435de48a2ba5683412dbea.jpeg

 

f319795b9c93cfe144dba85de410a42c.jpeg

 

2282423932895aa1e08d644a6ffd2429.jpeg

 

ea3448e0d39fbf2538ed6363b637c9dd.jpeg

 

b4af274316105e287c069e024f646cb3.jpeg

3. 企业数据治理的核心位置:

治理框架:阐述了数据治理在公司治理、IT治理和业务流程中的核心作用。

业务系统支持:列出了数据治理如何支撑企业关键业务及未来业务系统建设的要求。

4. 企业数据治理的范围与目标:

治理范围:明确了企业数据治理涵盖静态数据、交易数据和分析数据。

治理目标:详细列出了数据治理的多个目标,包括实现数据标准化、提高数据质量、支持数据共享等。

5. 信息化顶层设计与技术架构:

顶层设计内容:包括技术架构规划、环境保障规划、数据分析、信息资源规划等。

企业级数据中心构建:讨论了如何构建企业级数据中心,以及静态数据中心的标准运行机制。

 

cfacdc277b10b61855c7a8b06e7c8207.jpeg

 

3c710dbf9b27725981278af7946f5dff.jpeg

 

b6de97f57d08a26d94a3e521f9f51306.jpeg

 

88153cfeae059c07d65e112b71066d92.jpeg

 

14e30f035be7541f879e9b22dfb3f22e.jpeg

 

e2bfc4337aab736f2d7a098c20f3cd1c.jpeg

 

b97256ad06234fd85f3cbf04e35d9a5e.jpeg

 

f90609b9b96b033457624f54455a40cd.jpeg

 

7e16d2985b819169a8bce3121f3f2e85.jpeg

 

af7152e5f8747c0c8f0d44aa6a1c8fd2.jpeg

 

e41715c11bf5fd15bddca9147c313b24.jpeg

 

6f5b2d599eeb378a096eebc2ba633465.jpeg

6.数据治理实施策略:

实施方法论:提出了数据治理项目的实施步骤,包括确立标准体系、数据治理平台实施、标准化体系建设等。

风险管理:识别了数据治理过程中可能遇到的风险,并提出了相应的规避策略。

7.数据治理平台与部署架构:

平台功能:介绍了数据治理平台的主要功能,如数据编码管理、数据建模、元数据管理等。

部署架构:展示了数据治理平台的部署架构,包括下级单位与总部的数据治理平台连接。

8. 数据治理的意义与现状评估:

治理意义:阐述了数据治理对企业的重要性,包括提高决策精度、降低风险等。

现状评估:对企业当前的数据管理现状进行了全面评估,指出了存在的问题和差距。

9. 数据治理的具体措施:

数据清洗与协同:讨论了如何通过数据清洗实现数据质量的提升,以及如何通过数据协同管理机制确保数据源的准确性。

二维码库与360度数据信息:提出了利用二维码库和360度数据信息来加速数据识别和优化数据管理。

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

公众号:优享智库

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值