【华为】案例——华为数字化转型与数据管理实践介绍
华为数据工作阶段:
第一阶段:通过数据治理、业务数字化、数据流打通提升业务作业效率和质量。
第二阶段:建设数据底座、汇聚联接数据、数据服务化,支持数字化运营,清洁数据成就卓越运营,智慧数据驱动有效增长。
数据管理架构与职责:
信息架构专家组与数据管理部:负责管理数据架构、数据质量、数据分析,以及公司数据Owner的职责。
数据管理政策与平台:包括数据架构管理政策、数据源管理政策,以及维度数据管理平台、数据质量管理工具、元数据管理平台、主数据管理平台等。
企业架构与变革管理:
企业架构委员会(EAC)与变革管理办公室(PO):负责业务架构、数据架构、应用架构、技术架构的规划与变革管理。
全球流程责任人(GPOs):负责各业务领域的流程管理与优化。
数据资产管理与分类:
通过分层架构表达数据的分类和定义,厘清数据资产,建立数据模型。
表达数据在业务流和IT系统的流转,定义数据产生的源头。
数据资产目录中的属性描述、业务对象统一定义、业务术语等。
数字化数据管理框架:
以业务数字化为前提,数据入湖为基础,重点建设数据中台。
两种入湖方式(虚拟入湖、物理入湖)与六项入湖标准。
数据中台联接方式:以业务流(事件)为中心、以对象(主体)为中心等五种方式。
数据服务化与运营模式转变:
从“保姆式”开发模式转变为“服务+自助”模式,提高响应速度和业务报表周期。
提供定制化数据服务、自动推送服务、数据地图、主题数据服务、基础数据服务等。
数据中台建设:
将数据按业务流/事件、对象/主体、标签、指标数据与算法进行整合与联接。
支撑业务的推演和根因分析,提升数据价值。
数据隐私与安全:
在数据管理框架中强调数据隐私与安全的重要性,制定相应政策和管理措施。
实际案例:
网络访问日志案例:通过员工访问网络日志数据,实时统计机关人员出差情况,解决人工统计周期长与数据不准的痛点。
数据价值与管理诉求:
数据工作旨在提升业务效率和质量,支持数字化运营,实现卓越运营和有效增长。
管理诉求包括确保数据质量、提升数据分析能力、支持业务决策等。
总结:华为通过两个阶段的数据工作,建立了完善的数据管理架构和流程,重点建设数据中台,实现数据服务化,提升数据价值。同时,通过企业架构与变革管理,确保数据资产的有效管理和利用。实际案例展示了数据在业务中的具体应用效果,体现了数据驱动业务增长的重要性。