本文核心内容是介绍基于人工智能的数字化IT管理解决方案,主要围绕如何通过AI技术提升IT运维管理的效率和效果展开。
1. 核心原则
-
全球一套系统:强调统一的IT管理平台,适用于全球范围。
-
全球统一流程:确保全球范围内采用一致的管理流程。
-
核心原则:自动化和简化,通过AI技术实现IT管理的自动化和流程简化。
2. 应用层
-
自动容量调整:系统能够自动调整容量以适应需求变化。
-
根因智能定位:利用AI技术快速定位问题的根本原因。
-
智能故障修复:通过智能算法实现故障的自动修复。
-
IT服务管理:整合IT服务管理流程,提升服务效率。
-
DevOps:支持开发运维一体化,促进开发与运维的协作。
-
发现问题:通过数据源异常标记和单指标异常检测,及时发现潜在问题。
-
定位问题:进行问题关联分析、根因分析、故障拓扑分析和故障链分析。
-
解决问题:实现故障止损和数据止损,减少损失。
-
决策支撑:提供成本分析和容量计划,为管理决策提供数据支持。
3. 技术能力层
-
多指标异常检测:通过多种指标检测异常情况。
-
调用树:分析系统调用关系,优化性能。
-
告警去噪:减少不必要的告警信息,提高告警的有效性。
-
配置优化:优化系统配置,提升性能。
-
资源调度:智能调度资源,提高资源利用率。
4. AIOps算法层
-
性能指标预测:预测系统性能指标,提前做好准备。
-
机器聚类:对机器进行聚类分析,优化管理。
-
KPI联动分析:分析关键性能指标之间的关联。
-
KPI事件关联:关联不同KPI事件,提升问题诊断能力。
-
无监督学习:通过无监督学习算法发现潜在问题。
-
故障特征提取:提取故障特征,用于故障诊断。
5. 算法层
-
监督学习:包括CNN、卡尔曼、随机森林、DiD、决策树、LSTM/RNN、DBSCAN等算法。
-
时序数据分解:对时序数据进行分解分析。
-
Apriori:用于关联规则挖掘。
-
回归:进行回归分析。
-
NLP:自然语言处理技术。
-
Holt-Winters:时间序列预测方法。
-
FP-Growth:频繁模式增长算法。
-
Pearson相关系数:计算变量之间的相关性。
6. 基础架构
-
设备:包括RMDB、MQ、NoSQL、TSDB、HDFS等。
-
配置库:管理配置信息。
-
告警事件:记录和管理告警事件。
-
性能指标:监控系统性能指标。
-
日志:记录系统运行日志。
-
问题单:管理问题处理流程。
-
Jobs作业:管理作业调度和执行。
7. IT运维之日常
-
传统运维问题:缺少对问题和异常的洞察和预判,运维管理滞后;对配置的属性和合规性缺少管控;缺少用户体验管理,缺乏性能与系统容量计划管理;缺少统一视图管理各类安全事件。
-
解决方案:
-
故障管理:通过机器学习算法提升对问题和异常的洞察力,通过机器预测提升性能故障预警能力。
-
配置管理:实时掌控IT配置变化,对配置的合规性进行管理,通过自动化手段避免人为事故。
-
性能管理:实时监控用户端操作和页面响应时延,构建应用性能和系统容量模型,消除瓶颈。
-
安全管理:对各类型安全事件进行统一管理、分析和视图展示,通过规则库自动发现和定义高危操作、用户和资产。
-
8. 总结
-
通过AI技术,提升IT运维管理的自动化和智能化水平。
-
解决传统运维中的痛点,如故障管理、配置管理、性能管理和安全管理。
-
提供全面的IT管理解决方案,优化资源配置,提升用户体验,降低安全风险。