Tensorflow-gpu 1.13.1+Python 3.7.2+CUDA 10.0 +cuDNN7.5

本文详细记录了在Windows 7环境下,成功配置Tensorflow-GPU 1.13.1、CUDA 10.0和cuDNN 7.5的过程,包括Anaconda3的安装、创建Python 3.7.2环境、显卡驱动和CUDA的安装,以及cuDNN的添加和tensorflow-gpu的安装步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近在工作站上安装Tensorflow-gpu失败了很多次,由于坚信Tensorflow 1.13.1对Python3.7和新的CUDA的支持,一直没有放弃,现在终于配置成功了,把过程简单记录下来,希望能对大家有帮助。

【电脑基础环境】
硬件:工作站,显卡Nvidia quadro M5000
软件:windows 7

【软件安装过程】

  1. Anaconda3
    下载地址:https://www.anaconda.com/distribution/
    安装版本:Anaconda3-2018.12-Windows-x86_64.exe(Python 3.7版本)
    安装参考:https://www.jianshu.com/p/62f155eb6ac5

  2. 创建开发环境
    (1)Anaconda3安装完成后,运行Anaconda Prompt
    (2)新建环境:conda create --name <env_name> <package_names>
    例如:conda create –name tensorflow python=3.7.2
    (3)激活环境:activate tensorflow

  3. 安装显卡驱动
    显卡驱动为向后兼容,本机安装的目前最新的版本:
    419.17-qua

3)v1.10.1 ~ v1.7.02. 安装全过程(1)选择版本2)安装结果参考文章一、版本对应下表来自 pytorch 的 github 官方文档:pytorch/vision: Datasets, Transforms and Models specific to Computer Visionpytorch 安装官网:Start Locally | PyTorchpytorch 之前版本的安装命令:Previous PyTorch Versions | PyTorchtorch、torchvision 等相关库:download.pytorch.org/whl/torch_stable.html其中,命令中 "-c pytorch" 表示官方源,自己换源可以去掉。torch 版本 torchvision 版本 torchaudio 版本 支持的 Python 版本(示例) Cuda 版本2.5.1 0.20.1 2.5.1 >=3.9, <3.133.12)[9/10/11/12] 12.4/12.1/11.82.5.0 0.20.0 2.5.0 >=3.9, <3.133.1212.4/12.1/11.82.4.1 0.19.1 2.4.1 >=3.8, <3.133.12)[8/9/10/11/12] 12.4/12.1/11.82.4.0 0.19.0 2.4.0 >=3.8, <3.133.1212.4/12.1/11.82.3.1 0.18.1 2.3.1 >=3.8, <3.133.12)8/9/10/11/12 12.1/11.82.3.0 0.18.0 2.3.0 >=3.8, <3.133.1212.1/11.82.2.2 0.17.2 2.2.2 >=3.8, <3.12 [8/9/10/11] 12.1/11.82.2.1 0.17.1 2.2.1 >=3.8, <3.12 12.1/11.82.2.0 0.17.0 2.2.0 >=3.8, <3.12 12.1/11.82.1.2 0.16.2 2.1.2 >=3.8, <3.123.10)8/9/10/11 12.1/11.82.1.1 0.16.1 2.1.1 >=3.8, <3.123.1012.1/11.82.1.0 0.16.0 2.1.0 >=3.8, <3.123.1012.1/11.82.0.0 0.15.0 2.0.0 >=3.8, <3.123.8)[8/9/10/11] 11.8/11.71.13.1 0.14.1 0.13.1 >=3.7.2, <=3.103.8)[7/8/9/10] 11.7/11.61.13.0 0.14.0 0.13.0 >=3.7.2, <=3.103.8) 11.7/11.61.12.1 0.13.1 1.12.1 >=3.7, <=3.103.8)[7/8/9/10] 11.6/11.3/10.21.12.0 0.13.0 1.12.0 >=3.7, <=3.103.8) 11.6/11.3/10.21.11.0 0.12.0 1.11.0 >=3.7, <=3.103.8) 11.3/10.21.10.1 0.11.2 0.10.1 >=3.6, <=3.9(3.8)[6/7/8/9] 11.3/10.21.10.0 0.11.0 0.10.0 >=3.6, <=3.9(3.8) 11.3/10.21.9.1 0.10.1 0.9.1 >=3.6, <=3.9(3.8)[6/7/8/9] 11.1/10.21.9.0 0.10.0 0.9.0 >=3.6, <=3.9(3.8) 11.1/10.21.8.1 0.9.1 0.8.1 >=3.6, <=3.9(3.8)[6/7/8/9] 11.1/10.21.8.0 0.9.0 0.8.0 >=3.6, <=3.9(3.8) 11.1/10.21.7.1 0.8.2 0.7.2 >=3.6(3.6) 11.0/10.2/10.11.7.0 0.8.0 0.7.0 >=3.6(3.6) 11.0/10.2/10.1二、安装命令(pip)1. 版本1)v2.5.1 ~ v2.0.0# v2.5.1# CUDA 12.4pip install torch==2.5.1 torchvision==0.20.1 torchaudio==2.5.1 --index-url https://download.pytorch.org/whl/cu124 -i https://pypi.tuna.tsinghua.edu.cn/simple/# CPU onlypip install torch==2.5.1 torchvision==0.20.1 torchaudio==2.5.1 --index-url https://download.pytorch.org/whl/cpu -i https://pypi.tuna.tsinghua.edu.cn/simple/(2)v1.13.1 ~ v1.11.0# v1.13.1# CUDA 11.7pip install torch==1.13.1+cu117 torchvision==0.14.1+cu117 torchaudio==0.13.1 --extra-index-url https://download.pytorch.org/whl/cu117 -i https://pypi.tuna.tsinghua.edu.cn/simple/# CPU onlypip install torch==1.13.1+cpu torchvision==0.14.1+cpu torchaudio==0.13.1 --extra-index-url https://download.pytorch.org/whl/cpu -i https://pypi.tuna.tsinghua.edu.cn/simple/(3)v1.10.1 ~ v1.7.0# v1.10.1# CUDA 10.2pip install torch==1.10.1+cu102 torchvision==0.11.2+cu102 torchaudio==0.10.1 -f https://download.pytorch.org/whl/cu102/torch_stable.html -i https://pypi.tuna.tsinghua.edu.cn/simple/# CPU onlypip install torch==1.10.1+cpu torchvision==0.11.2+cpu torchaudio==0.10.1 -f https://download.pytorch.org/whl/cpu/torch_stable.html -i https://pypi.tuna.tsinghua.edu.cn/simple/2. 安装全过程(1)选择版本torch 版本 torchvision 版本 torchaudio 版本 支持的 Python 版本(示例) Cuda 版本2.1.0 0.16.0 2.1.0 >=3.8, <3.123.1012.1/11.8这里选择的框架和环境如下:torch2.1.0 | torchvision0.16.0 | torchaudio2.1.0 | python3.10 | Cuda12.1,若需要将创建的虚拟环境添加到 Jupyter Lab / Jupyter Notebook 中使用,则需要第 3-6 步,否则不用。打开 WIN + R,输入 “cmd”,进入命令行窗口,其他步骤如下:# 1. Anaconda 创建虚拟环境conda create -n torch python=3.10# 2. 激活并进入虚拟环境activate torch# 3. 安装 ipykernel pip install ipykernel -i https://pypi.tuna.tsinghua.edu.cn/simple/# 4. 安装ipykernel,将虚拟环境加入 jupyter 内核中python -m ipykernel install --name torch --display-name torch# 5. 检查新虚拟环境是否成功加入内核jupyter kernelspec list# 6. 从指定文件夹里进入 jupyterjupyter lab# 7. 安装 torch 等软件包
最新发布
04-01
### 回答1: 要安装tensorflow-gpu1.13.1,您需要先安装CUDAcuDNN。然后,您可以使用pip命令安装tensorflow-gpu1.13.1。安装命令如下: 1. 安装CUDAcuDNN 请根据您的操作系统和CUDA版本下载并安装CUDAcuDNN。安装完成后,请将CUDAcuDNN的路径添加到环境变量中。 2. 安装tensorflow-gpu1.13.1 打开命令行窗口,输入以下命令: pip install tensorflow-gpu==1.13.1 等待安装完成后,您就可以使用tensorflow-gpu1.13.1了。 ### 回答2TensorFlow是一种流行的机器学习框架,可以用于构建和训练各种深度学习模型。在使用TensorFlow时,通常可以选择使用CPU或GPU进行计算。通过使用GPU进行计算,可以大大提高训练模型的速度。 要安装TensorFlow-GPU 1.13.1,需要按照以下步骤进行操作: 1. 首先,确保你的计算机上已经安装了兼容的NVIDIA GPU驱动程序。你可以在NVIDIA官方网站上找到适合你的GPU的最新驱动程序,并按照说明进行安装。 2. 接下来,你需要安装CUDA Toolkit,这是NVIDIA提供的一种用于进行GPU计算的平台和工具集。请根据你的GPU型号下载并安装适配的CUDA Toolkit版本。安装时,可以选择安装所需的组件和示例程序。 3. 然后,你需要安装cuDNNCUDA Deep Neural Network Library),它是用于深度学习模型的GPU加速库。请前往NVIDIA开发者网站,下载与你的CUDA版本匹配的cuDNN版本,并按照安装说明进行安装。 4. 在上述步骤完成后,你可以通过pip安装TensorFlow-GPU 1.13.1。打开终端或命令提示符窗口,并运行以下命令: pip install tensorflow-gpu==1.13.1 这样就会自动下载和安装TensorFlow-GPU的指定版本及其依赖项。 5. 安装完成后,你可以尝试导入TensorFlow库以验证是否安装成功。在Python中,运行以下代码: import tensorflow as tf 如果没有出现错误提示,则说明TensorFlow-GPU 1.13.1已经成功安装并可以正常使用了。 总之,安装TensorFlow-GPU 1.13.1需要先安装兼容的NVIDIA GPU驱动程序、CUDA Toolkit和cuDNN,然后通过pip安装TensorFlow-GPU。确保按照官方文档和安装说明进行操作,以确保安装过程顺利进行,并获得最佳性能和稳定性。 ### 回答3: 要安装TensorFlow-GPU 1.13.1,你需要以下几个步骤: 1. 首先,你需要确保你的计算机具备一个兼容的GPU设备,并且已经安装了合适的GPU驱动程序。你可以查找你的GPU型号,并从官方网站下载和安装对应的驱动程序。 2. 为了正确地安装TensorFlow-GPU 1.13.1,你需要一个支持CUDA Toolkit 10.0版本。你可以从NVIDIA官方网站上下载并安装CUDA Toolkit。确保你选择与你的GPU和操作系统兼容的适当版本3. 在安装CUDA Toolkit之后,你需要安装cuDNNCUDA® Deep Neural Network library)。你可以从NVIDIA官方网站上注册并下载适用于你的CUDA版本cuDNN。 4. 确保你的Python环境已经安装好了,而且是兼容的。TensorFlow-GPU 1.13.1要求使用Python 3.53.6或3.7,并且需要32位或64位的Windows操作系统,或者是Linux操作系统。 5. 现在,你可以通过使用pip或Anaconda包管理器来安装TensorFlow-GPU 1.13.1。你可以运行以下命令来安装: pip install tensorflow-gpu==1.13.1 如果你使用Anaconda,你可以运行以下命令来创建一个新的虚拟环境,并安装TensorFlow-GPU 1.13.1: conda create -n <环境名称> python=3.6 conda activate <环境名称> conda install tensorflow-gpu==1.13.1 安装完成后,你可以通过导入TensorFlow来验证安装是否成功: import tensorflow as tf print(tf.__version__) 如果成功打印出了1.13.1,那么恭喜你,你已经成功安装了TensorFlow-GPU 1.13.1!现在你可以开始使用它进行深度学习任务。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值