Tensorflow并行GPU计算

本文介绍了Tensorflow如何利用GPU进行并行计算,包括单个GPU的使用、多GPU同步与异步训练模式的原理及优缺点,以及在一台机器上实现多GPU并行训练的代码示例。在深度学习训练中,同步模式确保设备间参数更新同步,而异步模式允许设备独立更新,各有其应用场景。
摘要由CSDN通过智能技术生成

Tensorflow使用GPU

Tensorflow程序可以通过tf.device函数来指定运行每一个操作的设备,这个设备可以是本地CPU或GPU,也可以是某一台远程服务器。

tf.device函数可以通过设备的名称来指定执行运算的设备。

  • 如CPU在tensorflow中的名称为/cpu:0。在默认情况下,即使机器有很多个CPU,tensorflow也不会区分它们,所有的CPU都使用/cpu:0作为名称。
  • 而一台机器上不同GPU的名称是不同的,第n个GPU在tensorflow中的名称为/gpu:n。

tensorflow提供了一个会计的方式来查看运行每一个运算的设备。在生成会话时,可以通过设置log_device_placement参数来打印运行每一个运算的设备。

import tensorflow as tf 
a=tf.constant([1.0,2.0,3.0],shape=[3],name='a')
b=tf.constant([1.0,2.0,3.0],shape=[3],name='b')
c=a+b
#通过log_device_placement参数来输出运行每一个运算的设备
sess=tf.Session(config=tf.ConfigProto(log_device_placement=True))
print (sess.run(c))

在以上代码中,tensorflow程序生成会话时加入了参数log_device_placement=True,所以程序会将运行每一个操作的设备输出到屏幕。

在配置好GPU的环境中,如果操作没有明确指定运行设备,那么tensorflow会优先选择GPU。但是,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值