回溯算法 + 剪枝专题

       回溯算法,相比大家再熟悉不过了,全排列、八皇后、迷宫问题、人狼羊菜过河、人鬼渡河等问题都可用回溯算法解决,但我们如何解决这类问题呢?
       回溯实质上也是枚举,即可尝试所有情况,我们来看一张图:
在这里插入图片描述
       画的不是很标准,但勉强能看,这是一棵满 n 叉树,可以借用此模型来理解回溯算法,即层层深入,直到叶子节点(底层)才返回,返回上一父节点,继续进入下一节点,直至遍历完整棵满 n 叉树。
       代码架构如下:

#include <iostream>
#include <algorithm>
using namespace std;

int n, x[1024], cnt = 0;//x[]存放排列内容 

void OutPut()
{
   
   
	printf("%d :", ++cnt);
	for(int i = 1; i <= n; ++i) printf("%d ", x[i]);
	putchar('\n');
}

void Full_Permutation(int k)
{
   
   
	if(k > n) OutPut();
	else
	{
   
   
		for(int i = 1; i <= n; ++i)
		{
   
   
			x[k] = i; 
			Full_Permutation(k + 1);	
		} 
	}
}

int main()
{
   
   
	scanf("%d", &n);
	Full_Permutation(1);
	return 0;
}

       这是最简单也是最初的回溯模型,即无任何条件限制(没有剪枝),但如果我们要输出全排列,即每个数字均不相同,这时需要进行剪枝,即在for循环下卡住对应的条件即每位数字不相等,与前面的数字一一比较即可。
       全排列(未优化)

void OutPut()
{
   
   
	printf("%d :", ++cnt);
	for(int i = 1; i <= n; ++i) printf("%d ", x[i]);
	putchar('\n');
}

//////////////////////////////////////
if(Prune(k, i))//剪枝 
{
   
   
	x[k] = i; 
	Full_Permutation(k + 1);	
} 

       关键点来了,这我需要每次都与前面记录的数相比较,付出了O(n)O(n)O(n)级别的代价,那我能否在一开始采用一个一维数组记录它是否被纳入x[]数组中呢?
       答案当然可以
在这里插入图片描述
      &nb

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值