基础部分
1.行内公式$x$
,整行显示公式$$x$$
一行内输入$x$
即可在该行嵌入
x
x
x,若是输入$$x$$
则会另起一行显示
x
x
x
2.希腊字母\alpha
\beta
\omega
α
\alpha
α
β
\beta
β
ω
\omega
ω,大写希腊字母\Gamma
\Delta
\Omega
Γ
\Gamma
Γ
Δ
\Delta
Δ
Ω
\Omega
Ω
3.上标下标 使用^和_ x^2_3
x
3
2
x^2_3
x32 , \log_2x
log
2
x
\log_2x
log2x
4.组{} 用在比如2^10
实际显示
2
1
0
2^10
210,他不会把10看成一个整体,这时需要组的概念,2^{10}
2
10
2^{10}
210;还比如说2_i^2
2
i
2
2_i^2
2i2,而2_{i^2}
2
i
2
2_{i^2}
2i2。
5.括号 ()
[]
\{ \}
,这样的括号不能根据公式的高度而变大,所以写(\frac{\sqrt x}{y^3})
(
x
y
3
)
(\frac{\sqrt x}{y^3})
(y3x)就装不下,使用\right)
\left(
,来使括号适应大小,\left(\frac{\sqrt x}{y^3}\right)
(
x
y
3
)
\left(\frac{\sqrt x}{y^3}\right)
(y3x)。
其他括号|x|
∣
x
∣
|x|
∣x∣,\vert |x| \vert
∣
∣
x
∣
∣
\vert |x|\vert
∣∣x∣∣,\langle x rangle
⟨
x
⟩
\langle x\rangle
⟨x⟩。
6.累加与微分 \sum
∑
\sum
∑,\int
∫
\int
∫,如\sum_1^n
∑
1
n
\sum_1^n
∑1n。其他的还有\prod
∏
\prod
∏,\bigcup
⋃
\bigcup
⋃,\bigcap
⋂
\bigcap
⋂,\iint
∬
\iint
∬。
7.分数 \frac ab
a
b
\frac ab
ba。对于复杂的分式\frac {a+1}{b+1}
a
+
1
b
+
1
\frac {a+1}{b+1}
b+1a+1,或是{a+1 \over b+1}
a
+
1
b
+
1
{a+1 \over b+1}
b+1a+1
8.开方 \sqrt
,如\sqrt{x^3}
x
3
\sqrt{x^3}
x3,\sqrt[3] x
x
3
\sqrt[3] x
3x。
9.特殊函数 \sin
sin
\sin
sin \lim
lim
\lim
lim,如lim_{x\to0}
l
i
m
x
→
0
lim_{x\to0}
limx→0。
10.特别标记记号
- 比较
\lt
< \lt <,\gt
> \gt >,\leqslant
⩽ \leqslant ⩽,\geqslant
⩾ \geqslant ⩾,\neq
≠ \neq ̸=。 + - \times \div \pm
+ + + − - − × \times × ÷ \div ÷ ± \pm ±\cdot
⋅ \cdot ⋅- 集合
\cup \cap \setminus \subset \subseteq \subsetneq \supset\supsetneq \in \notin \varnothing
∪ \cup ∪ ∩ \cap ∩ ∖ \setminus ∖ ⊂ \subset ⊂ ⊆ \subseteq ⊆ ⊊ \subsetneq ⊊ ⊃ \supset ⊃ ⊋ \supsetneq ⊋ ∈ \in ∈ ∉ \notin ∈/ ∅ \varnothing ∅ {n+1 \choose 2k}
或{\binom{n+1}{2k}}
( n + 1 2 k ) {n+1 \choose 2k} (2kn+1)- 逻辑
\land
∧ \land ∧,\lor
∨ \lor ∨,\lnot
¬ \lnot ¬,\forall
∀ \forall ∀,\exists
∃ \exists ∃。 \approx \sim
≈ \approx ≈ ∼ \sim ∼\infty
∞ \infty ∞\nabla \partial
∇ \nabla ∇ ∂ \partial ∂\equiv \pmod
a ≡ b ( m o d n ) a \equiv b \pmod n a≡b(modn)
-\ldots
… \ldots …,\codts
⋯ \cdots ⋯- 特殊希腊字母
\epsilon
ϵ \epsilon ϵ,\varepsilon
ε \varepsilon ε,\phi \varphi
ϕ \phi ϕ φ \varphi φ,\ell
ℓ \ell ℓ
11.空格 公式间加空格并不会增加显示的间隔,如a b
a b a b ab,这时要小空格a\,b
a   b a\,b ab,大空格a\;b
a    b a\;b ab,更宽的空格,\quad
a b a \quad b ab,\qquad
a b a \qquad b ab。
12.\bar
x ˉ \bar x xˉ,\overline
x y ‾ \overline {xy} xy,\ver
c ⃗ \vec c c
矩阵
1.\begin{matrix}...\end{matrix}
,其中矩阵的每一行末尾用\\
分割。如:
$$
\begin{matrix}
1 & x & x^2 \\
4 & x & x^2 \\
5 & x & x^2 \\
\end{matrix}
$$
1
x
x
2
4
x
x
2
5
x
x
2
\begin{matrix} 1 & x & x^2 \\ 4 & x & x^2 \\ 5 & x & x^2 \\ \end{matrix}
145xxxx2x2x2
1.给矩阵加上括号使用上一节第5部分,或是将matrix
替换为pmatrix
(
1
x
x
2
4
x
x
2
5
x
x
2
)
\begin{pmatrix}1 & x & x^2 \\4 & x & x^2 \\5 & x & x^2 \\\end{pmatrix}
⎝⎛145xxxx2x2x2⎠⎞,bmatrix
[
1
x
x
2
4
x
x
2
5
x
x
2
]
\begin{bmatrix}1 & x & x^2 \\4 & x & x^2 \\5 & x & x^2 \\\end{bmatrix}
⎣⎡145xxxx2x2x2⎦⎤,Bmatrix
{
1
x
x
2
4
x
x
2
5
x
x
2
}
\begin{Bmatrix}1 & x & x^2 \\4 & x & x^2 \\5 & x & x^2 \\\end{Bmatrix}
⎩⎨⎧145xxxx2x2x2⎭⎬⎫,vmatrix
∣
1
x
x
2
4
x
x
2
5
x
x
2
∣
\begin{vmatrix}1 & x & x^2 \\4 & x & x^2 \\5 & x & x^2 \\\end{vmatrix}
∣∣∣∣∣∣145xxxx2x2x2∣∣∣∣∣∣,Vmatrix
∥
1
x
x
2
4
x
x
2
5
x
x
2
∥
\begin{Vmatrix}1 & x & x^2 \\4 & x & x^2 \\5 & x & x^2 \\\end{Vmatrix}
∥∥∥∥∥∥145xxxx2x2x2∥∥∥∥∥∥
2.使用\cdots
⋯
\cdots
⋯,\vdots
⋮
\vdots
⋮,\ddots
⋱
\ddots
⋱
$$
\begin{pmatrix}
1&a_1&a_1^2&\cdots&a_1^n\\
\end{pmatrix}
$$
(
1
a
1
a
1
2
⋯
a
1
n
1
a
2
a
2
2
⋯
a
2
n
⋮
⋮
⋮
⋱
⋮
1
a
m
a
m
2
⋯
a
m
n
)
\begin{pmatrix} 1&a_1&a_1^2&\cdots&a_1^n\\ 1&a_2&a_2^2&\cdots&a_2^n\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ 1&a_m&a_m^2&\cdots&a_m^n\\ \end{pmatrix}
⎝⎜⎜⎜⎛11⋮1a1a2⋮ama12a22⋮am2⋯⋯⋱⋯a1na2n⋮amn⎠⎟⎟⎟⎞
1.对于水平方向的增广矩阵\begin{array}{cc|c}...\end{array}
$$
\begin{array}{cc|c}
1&2&3\\
4&5&6\\
\end{array}
$$
1
2
3
4
5
6
\begin{array}{cc|c} 1&2&3\\ 4&5&6\\ \end{array}
142536
2.竖直增广矩阵,使用\hline
$$
\begin{pmatrix}
a&b\\
c&d\\
\hline
1&0\\
0&1
\end{pmatrix}
$$
( a b c d 1 0 0 1 ) \begin{pmatrix} a&b\\ c&d\\ \hline 1&0\\ 0&1 \end{pmatrix} ⎝⎜⎜⎛ac10bd01⎠⎟⎟⎞