"""
837. 新21点
爱丽丝参与一个大致基于纸牌游戏 “21点” 规则的游戏,描述如下:
爱丽丝以 0 分开始,并在她的得分少于 K 分时抽取数字。
抽取时,她从 [1, W] 的范围中随机获得一个整数作为分数进行累计,其中 W 是整数。
每次抽取都是独立的,其结果具有相同的概率。
当爱丽丝获得不少于 K 分时,她就停止抽取数字。 爱丽丝的分数不超过 N 的概率是多少?
示例 1:
输入:N = 10, K = 1, W = 10
输出:1.00000
说明:爱丽丝得到一张卡,然后停止。
示例 2:
输入:N = 6, K = 1, W = 10
输出:0.60000
说明:爱丽丝得到一张卡,然后停止。
在 W = 10 的 6 种可能下,她的得分不超过 N = 6 分。
示例 3:
输入:N = 21, K = 17, W = 10
输出:0.73278
"""
class Solution:
def new21Game(self, N: int, K: int, W: int) -> float:
"""
不能直接用正确方案数/总方案书数
因为小于N还是继续抽,所以是个加权求和
动态规划
假设当前是f(16),w=10,我们需要看f(17)~f(26)
:param N:
:param K:
:param W:
:return:
"""
"""
假设N=21, K=17, W=10
"""
dp = [0.0]*(K+W)
"""
当N=28时,我们声明数组长度只到了26,因为后续也不会使用数组27,28的数值,因为取不到
"""
for k in range(K, min(N+1, K+W)):
dp[k] = 1.0
S = min(N-K+1, W) # 防止数组越界
for k in range(K-1, -1, -1):
dp[k] = S/float(W)
S += dp[k]-dp[k+W]
return dp[0]
S = Solution()
a = S.new21Game(21, 17, 10)
print(a)
力扣837 新21点
最新推荐文章于 2024-01-20 14:09:12 发布