一文读懂Depthwise卷积

本文详细介绍了Depthwise卷积的原理与计算开销,它只对每个通道进行一次卷积,降低了计算复杂度。此外,还探讨了DepthwiseSeparable卷积,它在Depthwise的基础上增加PointWise卷积以保持通道间信息交换。Depthwise卷积在移动端神经网络如ShuffleNet和EfficentNet中有广泛应用。
摘要由CSDN通过智能技术生成

视频来源:
https://www.bilibili.com/video/av67348232?from=search&seid=10221504884724623592

常规卷积

在这里插入图片描述
相信接触过卷积神经网络的都知道常规卷积的操作
我们通过N个DkDk大小的卷积核
卷积出来的结果
设为Dn
Dn*N
在这里插入图片描述
现在我们来计算一下常规卷积的计算开销
在这里插入图片描述
一个卷积核做一次卷积操作需要的开销为

												Dk*Dk*M

而每个卷积核完整地卷积完一次所需开销为

												Dg*Dg*Dk*Dk*M

这里我们假设卷积出来的结果长宽为Dg
然后我们使用了N个卷积核来进行卷积
所以总计算开销为

												N*Dg*Dg*Dk*Dk*M

DepthWise卷积

下面我们来看一下Depthwise卷积
常规的卷积中,每个卷积核都对每个通道进行了一次计算

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值