【leetcode】(python) 70. Climbing Stairs爬楼梯


70. Climbing Stairs Easy

Description

You are climbing a stair case. It takes n steps to reach to the top.

Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top?

Note: Given n will be a positive integer.

Example

  • Example 1:
Input: 2
Output: 2
Explanation: There are two ways to climb to the top.
1. 1 step + 1 step
2. 2 steps
  • Example 2:
Input: 3
Output: 3
Explanation: There are three ways to climb to the top.
1. 1 step + 1 step + 1 step
2. 1 step + 2 steps
3. 2 steps + 1 step

题意

每次只能爬一层或者两层,求爬到第n层的总方法数

解题思路

这题看到给的示例,推了一下爬到第4层有5种方法,而到第4层是与第3层和地2层有关的,可以联想到斐波那契数列。
每次只能走1或2层,那么要到达第n层,最后一步都有两种方法,从倒数第一层迈一步,或从倒数第二层迈两步。

code

class Solution:
    def climbStairs(self, n: int) -> int:
        if n <= 1:
            return 1
        res = []
        res.append(1)
        res.append(1)
        for i in range(2,n+1):
            res.append(res[-2] + res[-1])
        return res[-1]
爬楼梯问题是LeetCode上的经典动态规划问题,编号为第70题,通常被称为“ Climbing Stairs”。该问题描述的是一个人有n级台阶,每次可以爬1阶或2阶,问他有多少种不同的方式能够到达最顶层。这里我们可以通过备忘录法(记忆化搜索)或者自底向上的动态规划方法求解。 **解题思路**: 1. 初始化:对于每层楼,我们都需要知道从第0层到第i层有多少种走法。如果只有一层,显然就只有1种方法;如果有两层,就有1(直接上)+ 1(先上一阶再上)种方法。 2. 动态转移:对于三层及以上的楼层,我们可以计算前两层的所有走法之和,即第i层的走法数等于从第(i-2)层走两步。 **伪代码**: ``` function climbStairs(n): dp = [0] * (n + 1) dp[0], dp[1] = 1, 1 for i in range(2, n + 1): dp[i] = dp[i - 1] + dp[i - 2] return dp[n] ``` **流程图**: 1. 初始化一个长度为n+1的数组dp,其中dp[i]表示到达第i层的方法数。 2. 设置初始状态:dp[0] = 1,dp[1] = 1。 3. 对于i从2到n,遍历数组,dp[i] = dp[i-1] + dp[i-2]。 4. 循环结束后,返回dp[n]作为结果。 **代码(Python)**: ```python def climbStairs(n): if n == 0 or n == 1: return n dp = [0] * (n + 1) dp[0], dp[1] = 1, 1 for i in range(2, n + 1): dp[i] = dp[i - 1] + dp[i - 2] return dp[n] # 测试 print(climbStairs(3)) # 输出 3,因为可以从第一层上1阶到第三层,也可以从第二层上两阶到第三层 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值