圆锥曲线一些奇怪的例题模型

引言:以下是菜鸡博主关于高中圆锥曲线的一些拓展或者非常规解法,仅供参考。熟练地运用常规解法才是考场得分的王道。不定期更新

1.已知椭圆 x 2 a 2 + y 2 b 2 = 1 \frac{x^2}{a^2}+\frac{y^2}{b^2}=1 a2x2+b2y2=1,若直线y=kx+m与椭圆交于A,B两点,O为坐标原点,求三角形OAB面积的取值范围。
显然可以联立爆算,然而博主太懒,只会投机取巧的方法
前置知识:
若三角形两条边的向量分别为 a ⃗ = ( x 1 , y 1 ) , b ⃗ = ( x 2 , y 2 ) \vec a=(x_1,y_1),\vec b=(x_2,y_2) a =(x1,y1),b =(x2,y2)那么叉积定义为 a ⃗ × b ⃗ = x 1 y 2 − x 2 y 1 \vec a\times \vec b=x_1y_2-x_2y_1 a ×b =x1y2x2y1(实际上叉积结果是一个垂直 a ⃗ \vec a a b ⃗ \vec b b 的向量,模长为上式的绝对值,但是对于高中数学学习意义不大)。其绝对值的几何意义为 a ⃗ \vec a a b ⃗ \vec b b 围成的平行四边形面积,即三角形面积的两倍。因此我们可以得到公式:
S △ = 1 2 ∣ x 1 y 2 − x 2 y 1 ∣ S_{\triangle}=\frac 1 2|x_1y_2-x_2y_1| S=21x1y2x2y1
思路:
首先我们可以利用参数方程,设 A ( a cos ⁡ α , b sin ⁡ α ) , B ( a cos ⁡ β , b sin ⁡ β ) A(a\cos \alpha,b\sin \alpha),B(a\cos \beta,b\sin\beta) A(acosα,bsinα)B(acosβ,bsinβ),然后可以利用向量叉积算出面积 S △ = O A ⃗ × O B ⃗ = 1 2 a b ∣ cos ⁡ α sin ⁡ β − s i n α cos ⁡ β ∣ S_{\triangle}=\vec{OA}\times\vec{OB}=\frac 1 2ab|\cos\alpha\sin\beta-sin\alpha\cos\beta| S=OA ×OB =21abcosαsinβsinαcosβ,注意到可以用和角公式合并为 S △ = 1 2 a b ∣ s i n ( α − β ) ∣ S_{\triangle}=\frac 1 2ab|sin(\alpha-\beta)| S=21absin(αβ)。因此取值范围就是 ( 0 , 1 2 a b ] 。 (0,\frac 1 2ab]。 (0,21ab]
高中过程书写
由于高中没有介绍向量叉积,因此我们需要书写用两个向量得到三角形面积的过程,以下为简单的推导:
S △ = 1 2 ∣ a ⃗ ∣ ∣ b ⃗ ∣ sin ⁡ θ S_{\triangle}=\frac 1 2|\vec a||\vec b|\sin\theta S=21a b sinθ
S △ = 1 2 ∣ a ⃗ ∣ ∣ b ⃗ ∣ 1 − cos ⁡ 2 θ S_{\triangle}=\frac 1 2|\vec a||\vec b|\sqrt{1-\cos^2\theta} S=21a b 1cos2θ
S △ = 1 2 ∣ a ⃗ ∣ 2 ∣ b ⃗ ∣ 2 − ( a ⃗ ⋅ b ⃗ ) 2 S_{\triangle}=\frac 1 2\sqrt{|\vec a|^2|\vec b|^2-(\vec a\cdot \vec b)^2} S=21a 2b 2(a b )2
至此,就可以利用向量叉积化简运算直接得出结果了。
小结:这是高中比较方便的求三角形面积的方法。与三角形面积相关的问题都可以模仿类似的思路。

2.(改编自2020年高考数学全国卷一圆锥曲线的一个结论)已知椭圆 x 2 a 2 + y 2 b 2 = 1 \frac{x^2}{a^2}+\frac{y^2}{b^2}=1 a2x2+b2y2=1的左右顶点为A、B。过A、B分别作斜率为 k 1 k_1 k1 k 2 k_2 k2直线 l 1 , l 2 l_1,l_2 l1,l2 l 1 l_1 l1与椭圆的另一个交点为C, l 2 l_2 l2与椭圆的另一个交点为D(C与D不重合),则CD过定点 ( k 2 k 1 − 1 k 2 k 1 + 1 a , 0 ) 。 (\frac{\frac{k_2}{k_1}-1}{\frac{k_2}{k_1}+1}a,0)。 (k1k2+1k1k21a,0)
证明:
C ( x 1 , y 1 ) C(x_1,y_1) C(x1,y1) D ( x 2 , y 2 ) D(x_2,y_2) D(x2,y2), l 1 : y = k 1 ( x + a ) l_1:y=k_1(x+a) l1:y=k1(x+a), l 2 : y = k 2 ( x − a ) l_2:y=k_2(x-a) l2:y=k2(xa)
l 1 l_1 l1 l 2 l_2 l2分别与椭圆联立可得两个方程:
( b 2 + a 2 k 1 2 ) x 2 + 2 a 3 k 1 2 x + a 2 ( k 1 2 a 2 − b 2 ) = 0 (b^2+a^2k_1^2)x^2+2a^3k_1^2x+a^2(k_1^2a^2-b^2)=0 (b2+a2k12)x2+2a3k12x+a2(k12a2b2)=0
( b 2 + a 2 k 2 2 ) x 2 − 2 a 3 k 2 2 x + a 2 ( k 2 2 a 2 − b 2 ) = 0 (b^2+a^2k_2^2)x^2-2a^3k_2^2x+a^2(k_2^2a^2-b^2)=0 (b2+a2k22)x22a3k22x+a2(k22a2b2)=0
由于这两个方程的另一个根已知( − a -a a a a a),由韦达定理:
x 1 = a ( b 2 − k 1 2 a 2 ) b 2 + a 2 k 1 2 x_1=\frac{a(b^2-k_1^2a^2)}{b^2+a^2k_1^2} x1=b2+a2k12a(b2k12a2)
y 1 = 2 a b 2 k 1 b 2 + a 2 k 1 2 y_1=\frac{2ab^2k_1}{b^2+a^2k_1^2} y1=b2+a2k122ab2k1
x 2 = − a ( b 2 − k 2 2 a 2 ) b 2 + a 2 k 2 2 x_2=\frac{-a(b^2-k_2^2a^2)}{b^2+a^2k_2^2} x2=b2+a2k22a(b2k22a2)
y 2 = − 2 a b 2 k 2 b 2 + a 2 k 2 2 y_2=\frac{-2ab^2k_2}{b^2+a^2k_2^2} y2=b2+a2k222ab2k2
C D : y = k x + m CD:y=kx+m CD:y=kx+m
y 1 = k x 1 + m 和 y 2 = k x 2 + m y_1=kx_1+m和y_2=kx_2+m y1=kx1+my2=kx2+m得CD的横截距:
− m k = x 2 y 1 − x 1 y 2 y 1 − y 2 -\frac m k=\frac{x_2y_1-x_1y_2}{y_1-y_2} km=y1y2x2y1x1y2
x 1 , x 2 , y 1 , y 2 x_1,x_2,y_1,y_2 x1,x2,y1,y2代入上式:
− m k = ( k 2 − k 1 ) ( b 2 + a 2 k 1 k 2 ) ( k 2 + k 1 ) ( b 2 + a 2 k 1 k 2 ) a = k 2 − k 1 k 2 + k 1 a -\frac m k=\frac{(k_2-k_1)(b^2+a^2k_1k_2)}{(k_2+k_1)(b^2+a^2k_1k_2)}a=\frac{k_2-k_1}{k_2+k_1}a km=(k2+k1)(b2+a2k1k2)(k2k1)(b2+a2k1k2)a=k2+k1k2k1a
所以CD过定点 ( k 2 k 1 − 1 k 2 k 1 + 1 a , 0 ) (\frac{\frac{k_2}{k_1}-1}{\frac{k_2}{k_1}+1}a,0) (k1k2+1k1k21a,0)
小结:显然,上面的结论可以推广到双曲线,同时其逆定理也显然成立。如果直线过y轴上的定点,也可以推导出类似的结论。不过菜鸡博主并没有想到解析法以外的证明方式,不愧是菜鸡 。

3.已知椭圆 x 2 a 2 + y 2 b 2 = 1 \frac{x^2}{a^2}+\frac{y^2}{b^2}=1 a2x2+b2y2=1上三点A、B、C,满足三角形ABC的重心为坐标原点O。求证: △ A B C \triangle ABC ABC面积为定值。
解法一:
对于三角形面积问题,我们可以尝试利用参数方程解决。
由于 △ O A B \triangle OAB OAB的面积是 △ A B C \triangle ABC ABC 1 3 \frac 1 3 31。因此我们只需要证明 △ O A B \triangle OAB OAB的面积是定值即可。
A ( a cos ⁡ α , b sin ⁡ α ) , B ( a cos ⁡ β , b sin ⁡ β ) A(a\cos \alpha,b\sin \alpha),B(a\cos \beta,b\sin\beta) A(acosα,bsinα)B(acosβ,bsinβ)
由于重心在O点,我们可以用A和B的坐标表示C点坐标,并利用C在椭圆上列方程。
即:
( a cos ⁡ α + a cos ⁡ β ) 2 a 2 + ( b sin ⁡ α + b sin ⁡ β ) 2 b 2 = 1 \frac{(a\cos\alpha+a\cos\beta)^2}{a^2}+\frac{(b\sin\alpha+b\sin\beta)^2}{b^2}=1 a2(acosα+acosβ)2+b2(bsinα+bsinβ)2=1
显然可以把a和b提到括号外面来:
( cos ⁡ α + cos ⁡ β ) 2 + ( sin ⁡ α + sin ⁡ β ) 2 = 1 (\cos\alpha+\cos\beta)^2+(\sin\alpha+\sin\beta)^2=1 (cosα+cosβ)2+(sinα+sinβ)2=1
然后展开括号,注意到二次方可以合并得到1:
2 cos ⁡ α cos ⁡ β + 2 sin ⁡ α sin ⁡ β + 2 = 1 2\cos\alpha\cos\beta+2\sin\alpha\sin\beta+2=1 2cosαcosβ+2sinαsinβ+2=1
然后可以利用和角公式:
cos ⁡ ( α − β ) = − 1 2 \cos(\alpha-\beta)=-\frac 1 2 cos(αβ)=21
根据上面第一个问题,我们知道:
S △ O A B = 1 2 a b ∣ sin ⁡ ( α − β ) ∣ S_{\triangle OAB}=\frac 1 2ab|\sin(\alpha-\beta)| SOAB=21absin(αβ)
因此三角形OAB面积是定值,因此三角形ABC面积为定值。
解法二:
实际上,如果是填空题,这道题可以利用仿射口算。
仿射可以理解为坐标的伸缩变换,在高中一般是将椭圆的问题转化为圆的问题。仿射变换主要满足下面三个性质:
性质1 变换后共线三点单比不变(即变换后三点的两个线段的比值和变换前的比值一样)
性质2 变换后保持同素性和接合性(即变换前直线与曲线若相切,变换后仍相切)
性质3 变换前后对应图形的面积比不变
(参考文献:摭谈仿射变换的应用——从一道高考题说起)
仿射后的图形面积和仿射前对应的图形面积之比为定值。在仿射后的椭圆对应的圆中,我们注意到如果三角形ABC的重心在圆心,必然使得三角形ABC是以圆心为中心的等边三角形。由于半径一定,因此三角形ABC面积一定。因此原命题成立。
小结:椭圆的仿射变换主要是利用了圆的一些特殊性质,如直径所对圆周角是直角、垂径定理等,可以用来记忆理解证明很多椭圆里面与 − b 2 a 2 -\frac{b^2}{a^2} a2b2以及 b 2 a 2 \frac{b^2}{a^2} a2b2有关的定值定点的结论。

  • 1
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值