非零初始条件系统的传递函数分析
在传递函数的定义中,通常假设系统满足零初始条件。然而在实际应用中,很多系统需要处理非零初始状态。为了探讨这一问题,我们以一个一阶微分方程为例进行分析。
一、一阶系统的分析
考虑以下一阶微分方程:
d x ( t ) d t + a x ( t ) = u ( t ) \frac{dx(t)}{dt} + ax(t) = u(t) dtdx(t)+ax(t)=u(t)
对其两边进行拉普拉斯变换,根据线性微分方程的性质,可得:
L [ d x ( t ) d t + a x ( t ) ] = L [ u ( t ) ] \mathcal{L}\left[\frac{dx(t)}{dt} + ax(t)\right] = \mathcal{L}[u(t)] L[dtdx(t)+ax(t)]=L[u(t)]
展开得到:
s X ( s ) − x ( 0 ) + a X ( s ) = U ( s ) sX(s) - x(0) + aX(s) = U(s) sX(s)−x(0)+aX(s)=U(s)
1. 零初始条件的情况
当初始条件 x ( 0 ) = 0 x(0) = 0 x(0)=0时,上式简化为:
s X ( s ) + a X ( s ) = U ( s ) sX(s) + aX(s) = U(s) sX(s)+aX(s)=U(s)
系统的传递函数可定义为:
G ( s ) = X ( s ) U ( s ) = 1