非零初始条件系统的传递函数分析

非零初始条件系统的传递函数分析

在传递函数的定义中,通常假设系统满足零初始条件。然而在实际应用中,很多系统需要处理非零初始状态。为了探讨这一问题,我们以一个一阶微分方程为例进行分析。

一、一阶系统的分析

考虑以下一阶微分方程:
d x ( t ) d t + a x ( t ) = u ( t ) \frac{dx(t)}{dt} + ax(t) = u(t) dtdx(t)+ax(t)=u(t)

对其两边进行拉普拉斯变换,根据线性微分方程的性质,可得:
L [ d x ( t ) d t + a x ( t ) ] = L [ u ( t ) ] \mathcal{L}\left[\frac{dx(t)}{dt} + ax(t)\right] = \mathcal{L}[u(t)] L[dtdx(t)+ax(t)]=L[u(t)]
展开得到:
s X ( s ) − x ( 0 ) + a X ( s ) = U ( s ) sX(s) - x(0) + aX(s) = U(s) sX(s)x(0)+aX(s)=U(s)

1. 零初始条件的情况

当初始条件 x ( 0 ) = 0 x(0) = 0 x(0)=0时,上式简化为:
s X ( s ) + a X ( s ) = U ( s ) sX(s) + aX(s) = U(s) sX(s)+aX(s)=U(s)
系统的传递函数可定义为:
G ( s ) = X ( s ) U ( s ) = 1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱代码的小黄人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值