神经网络
文章平均质量分 85
爱代码的小黄人
分享新知
展开
-
什么是2范数、1范数、∞范数?
例如,2范数常用于计算向量之间的欧几里得距离,1范数用于优化问题中的稀疏性约束,而无穷范数则用于测量向量中最大分量的影响。在数学和线性代数中,范数(Norm)是一种测量向量大小或长度的工具。1范数,也称为曼哈顿范数或绝对值和范数,表示向量各元素绝对值的总和。2范数,也称为欧几里得范数,表示向量在欧几里得空间中的长度。无穷范数,也称为最大范数,表示向量各元素绝对值中的最大值。这种范数测量的是向量中最大分量的绝对值。这种范数测量的是向量分量绝对值的总和。这种范数测量的是向量的欧几里得距离。原创 2024-07-30 15:45:35 · 2673 阅读 · 0 评论 -
什么是贝叶斯优化(Bayesian Optimization)?
贝叶斯最优化(Bayesian Optimization)是一种用于函数全局最优化的策略,特别适用于那些计算代价昂贵的黑箱函数(如机器学习模型的超参数调优)。其核心思想是通过构建一个代理模型(通常是高斯过程或随机森林),逐步选择最优的参数,从而有效地找到全局最优解。贝叶斯最优化能够在不需要大量计算资源的情况下,有效探索参数空间,具有更高效、更严密的特点。原创 2024-07-30 17:39:55 · 3526 阅读 · 0 评论 -
什么是Batch Normalization?为什么要Batch Norm?以及Batch Norm的示例和可视化
Batch Normalization(批量归一化)是 2015年提出的方法,是一种用于加速深度神经网络训练并提高其稳定性的方法。其主要思想是对每个mini-batch中的数据进行归一化,使得每个mini-batch的数据分布的均值为0,方差为1。原创 2024-07-30 12:10:19 · 1409 阅读 · 0 评论