终值定理的推导与理解

终值定理的推导与理解

终值定理是控制理论和信号处理中的一个重要工具,它通过频域的拉普拉斯变换来分析时间域函数的最终稳态值。具体来说,终值定理提供了一个简便的方法,利用 F ( s ) F(s) F(s) f ( t ) f(t) f(t) 的拉普拉斯变换)直接计算时间域 f ( t ) f(t) f(t) t → ∞ t \to \infty t 时的稳定值。本文将从终值定理的公式入手,结合数学推导和直观解释,帮助读者理解其本质。

1. 终值定理的公式

终值定理的表达式为:

lim ⁡ t → ∞ f ( t ) = lim ⁡ s → 0 s F ( s ) \lim_{t \to \infty} f(t) = \lim_{s \to 0} sF(s) tlimf(t)=s0limsF(s)

其中:

  • f ( t ) f(t) f(t) 是时间域的原函数;
  • F ( s ) F(s) F(s) f ( t ) f(t) f<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱代码的小黄人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值