终值定理的推导与理解
终值定理是控制理论和信号处理中的一个重要工具,它通过频域的拉普拉斯变换来分析时间域函数的最终稳态值。具体来说,终值定理提供了一个简便的方法,利用 F ( s ) F(s) F(s)( f ( t ) f(t) f(t) 的拉普拉斯变换)直接计算时间域 f ( t ) f(t) f(t) 在 t → ∞ t \to \infty t→∞ 时的稳定值。本文将从终值定理的公式入手,结合数学推导和直观解释,帮助读者理解其本质。
1. 终值定理的公式
终值定理的表达式为:
lim t → ∞ f ( t ) = lim s → 0 s F ( s ) \lim_{t \to \infty} f(t) = \lim_{s \to 0} sF(s) t→∞limf(t)=s→0limsF(s)
其中:
- f ( t ) f(t) f(t) 是时间域的原函数;
- F ( s ) F(s) F(s) 是 f ( t ) f(t) f<