comfyui使用模型两种方式

1、huggingface
1.1 原始用法是模型clone到本地,直接运行
下面记录了git克隆大文件报错的问题
https://github.com/git-lfs/git-lfs/issues/5749
打开git bash,直接执行 GIT_CLONE_PROTECTION_ACTIVE=false 就行
这种方式应该也可以 GIT_CLONE_PROTECTION_ACTIVE=false git clone https://huggingface.co/yisol/IDM-VTON
因为我看hugging face 有类似写法 GIT_LFS_SKIP_SMUDGE=1 git clone https://huggingface.co/yisol/IDM-VTON

下面是克隆后,通过命令行管理项目
python -m pip install huggingface_hub
下面这两步,是在python交互窗口里运行的,不是cmd
huggingface-cli login
huggingface-cli lfs-enable-largefiles .

但是注意,huggingface 直接git下载项目太费流量(比显示的文件大小要多出很多流量),可以只克隆项目,以后用到哪个ck下哪个
以后换无线流量那个vpn套餐

1.2 除了clone项目到本地,还可以通过代码直接调用模型
先在本地建个项目,项目里调用huggingface封装好的库
自己新建了个项目,使用pycharm clone项目后,push需要登陆,但是huggingface不让用账号密码登陆了,
https://huggingface.co/blog/password-git-deprecation
于是我申请了token,在clone的项目路径下执行下面语句,然后就可以在pycharm里正常操作了
git remote set-url origin https://rangerzz:……@huggingface.co/rangerzz/rangerzz

现在可以在项目里跟着transformer的文档实践了 https://huggingface.co/docs/transformers/pipeline_tutorial
以后huggingface有了新项目,可以通过transformer直接使用模型,但最好提前下载文件离线使用 https://huggingface.co/docs/transformers/installation 最下面讲离线

在comfyui中,只需要从huggingface下载ck文件

2、civitai 不讲工作流,都是直接用comfyui基础工作流,然后到官网挑下载右下方对应的ck,lora,复制提示词,完事儿

如何保证面部一致性:
midjurney setting可以设置v6模式
生成模特图,保存,再上传到midjurney
输入新的描述词,末尾添加 --cref 跟刚才上传的图片地址 --cw 0 强度为0只会参考脸部,强度默认是100,会参考脸和衣服
ComfyUI是一个用于训练模型的开源工具,它基于PyTorch和Transformers库。下面是使用ComfyUI训练模型的一般步骤: 1. 安装ComfyUI:首先,你需要安装ComfyUI库。你可以通过pip命令来安装:`pip install comfyui`。 2. 准备数据集:在使用ComfyUI训练模型之前,你需要准备一个合适的数据集。数据集应该包含输入文本和对应的标签。确保数据集的格式符合ComfyUI的要求。 3. 创建模型配置文件:在使用ComfyUI训练模型之前,你需要创建一个模型配置文件。这个配置文件包含了模型的参数设置,如模型类型、隐藏层大小、学习率等。你可以根据自己的需求进行配置。 4. 编写训练脚本:使用ComfyUI进行模型训练需要编写一个训练脚本。在脚本中,你需要指定数据集路径、模型配置文件路径以及其他训练相关的参数。你可以使用ComfyUI提供的API来加载数据集、构建模型、定义损失函数和优化器等。 5. 开始训练:运行训练脚本,开始训练模型ComfyUI会自动加载数据集、构建模型,并在每个epoch结束时计算损失并更新模型参数。你可以根据需要设置训练的epoch数和批次大小。 6. 保存模型:训练完成后,你可以保存训练好的模型ComfyUI提供了保存模型的API,你可以指定保存路径和模型名称。 以上是使用ComfyUI训练模型的一般步骤。具体的实现细节和参数设置可以参考ComfyUI的官方文档。祝你使用ComfyUI训练模型顺利!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值