卷积层 Convolution Layer
0.背景
一个卷积核 ==> 一个输出
多个卷积核 ==> 多个输出
一个卷积层 ==> 多个卷积核排列 ==> 多个输出
了解卷积核可以看:
https://blog.csdn.net/weixin_44121966/article/details/118543625?spm=1001.2014.3001.5501
1.卷积层的例子
原图大小:32 * 32 * 3
kernel:一个 5 * 5 * 3 的卷积核
输出形状:(32-5)+1 = 28 即 28 * 28 * 1(一个卷积核)
输出形状的计算公式可以看:
https://blog.csdn.net/weixin_44121966/article/details/118544730?spm=1001.2014.3001.5501
*