【深度学习理论 卷积神经网络03】快速了解卷积层(Convolution Layer)的功能和运作方式

卷积层 Convolution Layer

0.背景

在这里插入图片描述

一个卷积核 ==> 一个输出
多个卷积核 ==> 多个输出
一个卷积层 ==> 多个卷积核排列 ==> 多个输出
了解卷积核可以看:
https://blog.csdn.net/weixin_44121966/article/details/118543625?spm=1001.2014.3001.5501

1.卷积层的例子

在这里插入图片描述
原图大小:32 * 32 * 3
kernel:一个 5 * 5 * 3 的卷积核
输出形状:(32-5)+1 = 28 即 28 * 28 * 1(一个卷积核)

输出形状的计算公式可以看:
https://blog.csdn.net/weixin_44121966/article/details/118544730?spm=1001.2014.3001.5501
在这里插入图片描述
*

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值