师姐论文阅读(存档,别看)

摘要:

本文主要工作如下:
1)gml问句匹配算法方案,
2)三种类型特征的提取思路:
1、基于 DNN 的关系特征(robert)
2、相似度特征(bert)
3、基于 TF-IDF 模型的关键词(token)特征(非参数化)
3)数据集: LCQMC 、 BQ corpus 进行检测

Gml框架:

在这里插入图片描述

1)简单实例标注:training数据全是简单实例
2)特征提取和影响力建模:根据简单实例和困难实例的关系构建因子图
3)渐进推理:最终的学习推理部分。思路:获取已标注问句对的标签,根据简单和困难实例之间的联系推导困难实例的标签。

因子图:

1)概念:
在这里插入图片描述

2)因子图学习:
已知条件中有x1,x3的概率分布,f1, f2 的函数形式,求解 x2 的概率分布。第一步需要先计算总体的联合概率分布,在图中即为f1, f2 表达式的乘积,对于因子的表达式,虽然函数形式已知,但仍需要参数来刻画因子在推理过程中的权重,具体的参数需要通过学习来拟合确定;第二步以上述信息为基础,推理隐变量的分布信息。
(已知事实结果,反推参数)——EM算法
在这里插入图片描述

Q(z):后验分布
L(θ,θn):最大似然估计

4)因子图推理:(待补充)
获得联合概率分布后获得边缘概率分布。
推理方法:
近似推理——采样法、变分推断法
精确推理——变量消元法、信念传播法

特征提取

1)全局特征:相似度特征(bert)
两问句输入BERT,获得的相似度
2)局部特征:关系特征(Roberta)
DNN提取问句对向量表示,将问句对的向量表征映射在向量空间中,对于每个困难实例(测试集的问句对),k 近邻算法选取和其距离最近的 k 个实例(包含简单实例和困难实例)记录下来,作为后续影响力建模的输入内容。
(数据特点:文本长度短,意向明确)
3)关键词特征:
提取关键词:
1、 jieba 对所有问句分词,停用词库滤掉无意义词汇, 再 TF-IDF 方法分别计算问句中每个词汇的重要程度;
2、获得了训练集和测试集中所有词汇 TF-IDF 值后,由大到小排序并截取前 n 个词汇,组成该实验数据集的关键词词库,如表 3-4 所示。
3、进行到这一步,其实已经获取到了初步的问句特征信息,可以直接用于后续的影响力建模步骤。
在这里插入图片描述

单现和共现:
共现:两个句子都包含同一类别的关键词;(同类)-》正向支持
单现:仅有一个问句包含某一类别的关键词-》负向支持
(单个关键词以聚合后的词集合形式加入因子图,Roberta)

影响力建模

表现不同特征在最终共同推理阶段如何发挥作用。
因子-》特征
单因子:仅关联一个实例;关键词因子
双因子:关联两个实例;相似度因子
影响力:因子函数

三种因子函数(待补)

渐进推理:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值