Fine-grained Post-training for Improving Retrieval-based Dialogue Systems-论文阅读

本文提出了一种针对检索式对话系统的细粒度后训练方法,通过将对话拆分为短的上下文-回答对,增强模型对内部话语交互的学习,同时引入话语关联分类(URC)任务,以理解对话中语句的语义关联和连贯性。实验结果显示,这种方法在三个基准数据集上取得显著优势,证明了其在响应选择任务上的有效性。
摘要由CSDN通过智能技术生成

Fine-grained Post-training for Improving Retrieval-based Dialogue Systems-论文阅读
改进基于检索的对话系统的一个细粒度后训练的方法
发表会议:2021 ACL的北美单元
原文链接:https://aclanthology.org/2021.naacl-main.122.pdf

摘要(翻译):
当使用预先训练好的语言模型时,基于检索的对话系统表现出优异的性能,其中包括来自transformers(BERT)的双向编码器表示。在多轮反应选择过程中,bert注重训练多话语语境与反应之间的关系。然而,当考虑语境中每个话语之间的关系时,这种训练方法是不够的。这导致了一个问题,即不能完全理解选择响应所需的上下文流。为了解决这个问题,我们提出了一种新的细粒度后训练(post-training)方法,该方法反映了多回合对话的特点。具体来说,该模型通过在对话会话中训练每个简短的语境-回答对来学习话语层面的交互。此外,通过使用一个新的训练目标,即话语关联分类(URC),该模型理解了对话话语之间的语义关联和连贯性。实验结果表明,我们的模型在三个基准数据集上都达到了新的水平,具有显著的优势。这表明细粒度后训练方法对于响应选择任务非常有效。

工作:
1、 新的细粒度后训练(post-training)方法-》将整个对话分成多个短上下文-回答对来训练模型。
1、 话语关联分类URC-》理解话语间的语义关联,将给定话语和目标话语之间的关系分类为更细粒度的标签。

一、 介绍
将整个对话分成多个简短的上下文-回答对的好处:
1、 模型可以学习内部话语之间的相互作用,逐渐扩展和学习话语之间的关系(自我关注)
2、 模型可以更准确的捕捉话语之间的关系。一般的,与回答相关的话语都位于靠近回答的地方。
话语关联分类URC:
提出URC,将目标话语分三类:随机、语义相似、下一句

三、 模型
3.1 问题描述
数据格式:在这里插入图片描述
其中:
Ci:上下文,包含多条语句(uj)
在这里插入图片描述

(M表示话语最长长度)
Ri:答案语句(一个句子)
Yi:标签,{0,1}
对于给定的上下文-回答对(ci, ri),算出ci和ri的匹配度。
3.2 模型结构
在这里插入图片描述

输入:x={ [CLS], SeqA[SEP], SeqB[SEP] },其中A和B分别为ci和ri,经过位置、段和标记嵌入后输入BERT,获得BERT的输出T[·],T[CLS]为ci-ri对的聚合表示(aggregate representation),将T[CLS]输入一个单层神经网络获得ci和ri的匹配得分gure(ci, ri):
在这里插入图片描述

Wfine:用于微调的可训练参数
模型损失函数使用交叉熵损失函数:
在这里插入图片描述
3.4 训练过程
1)特色:
1、 将对话分为多个短上下文-回答对(sci, ri):
把每句话看成一个回答(ri),将它之前的k句话看做上下文(sci),对每个(sci, ri)进行训练。
2、 将URC作为训练目标之一:
将答案分为三个标签:随机的语句(随机)、同对话中的其他问答(语义相似)、目标答案(下一句)。
在这里插入图片描述

2)训练过程:
输入数据:Uj={ uj, uj+1, uj+2, …, uj+k-1,uj+k }(从j+k=1开始),其中,{uj, uj+1,…, uj+k-1} 组成sc,uj+k为rj+k (ut),则模型输入为:
在这里插入图片描述
最后得分为:gure(sc, ut)。
URC的损失函数为:
在这里插入图片描述
此外,训练时还用了MLM,所以模型损失函数为:
在这里插入图片描述
四、实验
4.1 数据集
1、Ubuntu对话数据集(英文)
2、Douban对话数据集(中文)
3、E-Commerce数据集(中文)
*下载地址在论文里,全在Google上
示例(E-Commerce):
在这里插入图片描述
数据集信息:
在这里插入图片描述
4.2 评价指标
1) R10@k:从10个候选中选出k个,正确答案包含在k个中的概率。
2) MAP:平均精度均值,用多个不同种类的查询对它进行测试,每个查询的结果计算一个AP值,把所有AP取平均值就是系统的MAP。
3) MRR:标准答案在被评价系统给出结果中的排序取倒数,再对所有的问题取平均。
4) P@1:第一个结果的准确度,对每个查询的结果算P@1,取这些值的平均值作为系统的P@1.
4.3 基线选择(待完成)
4.4 实验结果:
在这里插入图片描述
五、 进一步分析(待完成)
六、实现过程(待完成)

这个排版实在太痛苦了!!!为什么不能调图片的大小!!

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值