wenet如何在训练后接着训练以及直接对预训练模型进行再次训练(如在新的数据集上再训练)?

本文介绍了在Wenet框架下,针对Aishell数据集的训练,如何处理没有初始checkpoint的情况。关键在于修改train_config中的checkpoint路径,指向先前训练的final.pt文件(重命名为init.pt),以便从该点继续训练。同时,文章提到decode_checkpoint不影响训练,主要用于解码阶段。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文以Aishell数据集的训练为例:

具体关联文件在wenet的框架里面 wenet/exsample/aishell/s0/run.sh脚本:

我们在首次训练模型时,并没有checkpoint点(因为还没训练过,怎么接着训练?)

checkpoint:用于描述在每次训练后保存模型参数(权重)的惯例或术语。这就像在游戏中保存关卡时你可以随时通过加载保存文件回复游戏。你可以加载保存的模型权重重新开启训练甚至可以之后进行一个推理。

当需要进行题目所示的操作的话需要将第一个箭头处的"checkpoint=" 后面加上你要重新开始训练的final.pt文件路径(并将此文件重新命名为init.pt)

train_config=conf/train_conformer.yaml  # 1.此处需要改变你的预训练模型里的yaml文件
cmvn=false
dir=exp/conformer
checkpoint=$dir/init.pt # 2.注意此处其实是你的之前的训练出的final文件(或者预训练模型的final.pt文件)并改名为init.pt的路径

# use average_checkpoint will get better result
average_checkpoint=false  # 3.此处改为false,不进行average_checkpoint?还没看懂
decode_checkpoint=$dir/final.pt  # 此处是解码过程stage5才会用到,不影响训练,不需要改变

 具体如何进行设置可以参看上述代码的1-2-3部操作!


可以看到在此处(stage4的执行代码)会将checkpoint路径加入执行参数中去!

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值