代码随想录 NO46 | LeetCode 123.买卖股票的最佳时机III 188.买卖股票的最佳时机IV

文章详细介绍了使用动态规划解决LeetCode中的123和188题,即买卖股票的最佳时机问题。通过五步法分析了动态规划的思路,包括确定dp数组、递推公式、初始化、遍历顺序,并提供了具体的Python代码实现。
摘要由CSDN通过智能技术生成

动态规划_LeetCode 123.买卖股票的最佳时机III 188.买卖股票的最佳时机IV

今天继续股票买卖,但是今天难度很大!

123.买卖股票的最佳时机III

给定一个数组,它的第 i 个元素是一支给定的股票在第 i 天的价格。
设计一个算法来计算你所能获取的最大利润。你最多可以完成 两笔 交易。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

本题关键在于至多买卖两次,这意味着可以买卖一次,可以买卖两次,也可以不买卖

动态规划五部曲详细分析一下:

  • 确定dp数组以及下标的含义
    一天一共就有五个状态,

    • 没有操作 (其实我们也可以不设置这个状态)
    • 第一次持有股票
    • 第一次不持有股票
    • 第二次持有股票
    • 第二次不持有股票

    dp[i][j]中 i表示第i天,j为 [0 - 4] 五个状态,dp[i][j]表示第i天状态j所剩最大现金。
    需要注意:dp[i][1],表示的是第i天,买入股票的状态,并不是说一定要第i天买入股票。
    例如 dp[i][1] ,并不是说 第i点一定买入股票,有可能 第 i-1天 就买入了,那么 dp[i][1] 延续买入股票的这个状态。

  • 确定递推公式
    达到dp[i][1]状态,有两个具体操作:

    • 操作一:第i天买入股票了,那么dp[i][1] = dp[i-1][0] - prices[i]
    • 操作二:第i天没有操作,而是沿用前一天买入的状态,即:dp[i][1] = dp[i - 1][1]
      那么dp[i][1]究竟选 dp[i-1][0] - prices[i],还是dp[i - 1][1]呢?

    一定是选最大的,所以 dp[i][1] = max(dp[i-1][0] - prices[i], dp[i - 1][1]);
    同理dp[i][2]也有两个操作:

    • 操作一:第i天卖出股票了,那么dp[i][2] = dp[i - 1][1] + prices[i]
    • 操作二:第i天没有操作,沿用前一天卖出股票的状态,即:dp[i][2] = dp[i - 1][2]

    所以dp[i][2] = max(dp[i - 1][1] + prices[i], dp[i - 1][2])
    同理可推出剩下状态部分:
    dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i]);
    dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i]);

  • dp数组如何初始化
    第0天没有操作,就是0,即:dp[0][0] = 0;
    第0天做第一次买入的操作,dp[0][1] = -prices[0];
    第0天做第一次卖出的操作,这个初始值应该是多少呢?
    此时还没有买入,怎么就卖出呢? 其实大家可以理解当天买入,当天卖出,所以dp[0][2] = 0;
    第0天第二次买入操作,初始值应该是多少呢?
    第二次买入依赖于第一次卖出的状态,其实相当于第0天第一次买入了,第一次卖出了,然后在买入一次(第二次买入),那么现在手头上没有现金,只要买入,现金就做相应的减少。
    所以第二次买入操作,初始化为:dp[0][3] = -prices[0];
    同理第二次卖出初始化dp[0][4] = 0;

  • 确定遍历顺序
    从递归公式其实已经可以看出,一定是从前向后遍历,因为dp[i],依靠dp[i - 1]的数值。

  • 举例推导dp数组

class Solution:
    def maxProfit(self, prices: List[int]) -> int:
        dp = [[0 for _ in range(5)] for _ in range(len(prices))]

        dp[0][1] = -prices[0]
        dp[0][3] = -prices[0]

        for i in range(1,len(prices)):
            dp[i][0] = dp[i - 1][0];
            dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] - prices[i])
            dp[i][2] = max(dp[i - 1][2], dp[i - 1][1] + prices[i])
            dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i])
            dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i])

        return dp[-1][4]

188.买卖股票的最佳时机IV

给定一个整数数组 prices ,它的第 i 个元素 prices[i] 是一支给定的股票在第 i 天的价格。
设计一个算法来计算你所能获取的最大利润。你最多可以完成 k 笔交易。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

动规五部曲

  • 确定dp数组以及下标的含义
    在动态规划:123.买卖股票的最佳时机III (opens new window)中,我是定义了一个二维dp数组,本题其实依然可以用一个二维dp数组。
    使用二维数组 dp[i][j] :第i天的状态为j,所剩下的最大现金是dp[i][j]
    j的状态表示为:
    0 表示不操作
    1 第一次买入
    2 第一次卖出
    3 第二次买入
    4 第二次卖出

    除了0以外,偶数就是卖出,奇数就是买入。
    题目要求是至多有K笔交易,那么j的范围就定义为 2 * k + 1 就可以了。

  • 确定递推公式
    达到dp[i][1]状态,有两个具体操作:

    • 操作一:第i天买入股票了,那么dp[i][1] = dp[i - 1][0] - prices[i]
    • 操作二:第i天没有操作,而是沿用前一天买入的状态,即:dp[i][1] = dp[i - 1][1]

    选最大的,所以 dp[i][1] = max(dp[i - 1][0] - prices[i], dp[i - 1][1]);
    同理dp[i][2]也有两个操作:

    • 操作一:第i天卖出股票了,那么dp[i][2] = dp[i - 1][1] + prices[i]
    • 操作二:第i天没有操作,沿用前一天卖出股票的状态,即:dp[i][2] = dp[i - 1][2]

    所以dp[i][2] = max(dp[i - 1][1] + prices[i], dp[i - 1][2])
    同理可以类比剩下的状态,代码如下:

for j in range(0,2 * k - 1 , 2):
                dp[i][j + 1] = max(dp[i - 1][j + 1], dp[i - 1][j] - prices[i])
                dp[i][j + 2] = max(dp[i - 1][j + 2], dp[i - 1][j + 1] + prices[i])
  • dp数组如何初始化
    第0天没有操作,这个最容易想到,就是0,即:dp[0][0] = 0;
    第0天做第一次买入的操作,dp[0][1] = -prices[0];
    第0天做第一次卖出的操作, 其实大家可以理解当天买入,当天卖出,所以dp[0][2] = 0;
    第0天第二次买入操作,第二次买入依赖于第一次卖出的状态,其实相当于第0天第一次买入了,第一次卖出了,然后在买入一次(第二次买入),那么现在手头上没有现金,只要买入,现金就做相应的减少。所以第二次买入操作,初始化为:dp[0][3] = -prices[0];
    第二次卖出初始化dp[0][4] = 0;
    所以同理可以推出dp[0][j]当j为奇数的时候都初始化为 -prices[0]
for j in range(1, 2 * k , 2):
            dp[0][j] = -prices[0]

在初始化的地方同样要类比j为偶数是卖、奇数是买的状态。

  • 确定遍历顺序
    从递归公式其实已经可以看出,一定是从前向后遍历,因为dp[i],依靠dp[i - 1]的数值。
  • 举例推导dp数组
class Solution:
    def maxProfit(self, k: int, prices: List[int]) -> int:
        if len(prices) == 0:
            return 0
        dp = [[0 for _ in range(2*k+1)] for _ in range(len(prices))]


        for j in range(1, 2 * k , 2):
            dp[0][j] = -prices[0]

        for i in range(1, len(prices)):
            for j in range(0,2 * k - 1 , 2):
                dp[i][j + 1] = max(dp[i - 1][j + 1], dp[i - 1][j] - prices[i])
                dp[i][j + 2] = max(dp[i - 1][j + 2], dp[i - 1][j + 1] + prices[i])

        return dp[-1][-1]

今天这题难度可以,没有接触过的,很难想到!可以好好推敲!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值