updateStateByKey的用法

1.首先,先看它的方法标签,主要传进来三个参数,第一个是一个updateFunc函数,这个函数很明确的告诉你这里面的输入值是 updateFunc: (Iterator[(K, Seq[V], Option[S])]) => Iterator[(K, S)],
输出值是Iterator[(K, S)]
另外一个参数就是分区器
在这里插入图片描述
下面主要介绍updateFunc这个函数是如何处理数据的,现在我们从实际场景出发,现在这个函数是有状态的,就意味着要保存上一次DStream的结果,利用上一个DStream的结果和最新的数据来进行按键规约,知道这里就好办了,下面我给一个代码实例
点击这里可以查看这个的案例

  /**
   * iter:   当前操作的RDD
   * String: 聚合的key
   * Seq[Int]: 在这个批次中此key在这个分区出现的次数集合  [1,1,1,1,1].sum()
   * Option[Int]:初始值或累加值   Some   None-> 模式匹配
   */
  val updateFunc= (   iter:Iterator[ (String,Seq[Int] ,  Option[Int] ) ] ) =>{
    //方案一:当成一个三元组运算
    // iter.map(    t=> (  t._1,   t._2.sum+t._3.getOrElse(0)  )    )   //  ->  { word:总次数}
    //方案二: 模式匹配来实现
    iter.map{  case(x,y,z)=>(  x,  y.sum+z.getOrElse(0)   ) }
  val reduced=wordAndOne.updateStateByKey(   updateFunc, new HashPartitioner(  ssc.sparkContext.defaultMinPartitions  ),  true)

  }```

import org.apache.spark.{SparkConf, SparkContext} import org.apache.spark.streaming.{Seconds, StreamingContext} import org.apache.spark.streaming.dstream.{DStream, ReceiverInputDStream} object UpdateStateByKeyTest { //newValues表示当前批次汇总成的(K,V)中相同K的所有V //runningCount表示历史的所有相同key的value总和 def updateFunction(newValues: Seq[Int], runningCount: Option[Int]): Option[Int] = { val newCount = runningCount.getOrElse(0) + newValues.sum Some(newCount) } def main(args: Array[String]): Unit = { //1.创建StreamingContext,两个参数:1.SparkConf对象 2.批处理时间间隔 val ssc: StreamingContext = new StreamingContext(new SparkConf().setAppName("UpdateStateByKeyTest").setMaster("local[2]"), Seconds(5)) //2.设置日志级别 ssc.sparkContext.setLogLevel("WARN") //3.配置检查点目录,使用updateStateByKey()方法必须配置检查点目录 ssc.checkpoint("./") //4.连接socket服务,需要socket的地址,端口号,存储级别 val dstream: ReceiverInputDStream[String] = ssc.socketTextStream("192.168.92.131", 9999) //5.按空格切分每一行,并且将切分出来的单词出现的次数记录为1 val wordAndOne: DStream[(String, Int)] = dstream.flatMap(_.split(" ")).map(word => (word, 1)) //6.调用UpdateStateByKey操作,统计每个单词在全局中出现的次数 val result: DStream[(String,Int)] = wordAndOne.updateStateByKey(updateFunction) //7.打印输出结果 result.print() //8.开启流式计算 ssc.start() //9.用于保持程序一直运行,除非人为干预停止 ssc.awaitTermination() } } 上述代码出现:Exception in thread "main" org.apache.spark.SparkException: Task not serializable 报错,如何解决?
最新发布
05-28
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值