支持向量机理论

本文探讨了支持向量机(SVM)的理论基础,包括点到超平面的距离公式证明、间隔选取问题的解析以及模型的对偶问题转化。重点展示了如何最大化间隔并确保模型的优化,同时解释了为什么间隔不能为0以及如何通过拉格朗日乘子法转换为对偶问题。
摘要由CSDN通过智能技术生成

点到平面的距离问题

这里的公式出现在书的第122页. 在样本空间中, 划分超平面可通过如下线性方程来描述:
w T x + b = 0 w^Tx+b=0 wTx+b=0
其中 w = ( w 1 ; w 2 ; . . . ; w d ) w=(w_1;w_2;...;w_d) w=(w1;w2;...;wd)为法向量, 决定了超平面的方向; b b b为位移项, 决定了超平面与原点之间的距离. 显然, 划分超平面可以被法向量 w w w和位移 b b b确定. 试证明样本空间中任意点 x x x到超平面的距离可写为:
r = ∣ w T x + b ∣ ∣ ∣ w ∣ ∣ r=\frac{|w^Tx+b|}{||w||} r=wwTx+b
证明:由于超平面的方程为 w T x + b = 0 w^Tx+b=0 wTx+b=0, 故 w w w为法向量. 设任意点的坐标为 x 1 x_1 x1, 在超平面上任找一点记为 x 2 x_2 x2, 与原点组成向量 a a a, 此时由于点 x 2 x_2 x2在超平面上, 故满足 w T x 2 + b = 0 w^Tx_2+b=0 wTx2+b=0, 将向量 w w w和向量 a a a做点积可得:
w T a = w T ( x 1 − x 2 ) = ∣ ∣ w ∣ ∣ ∣ ∣ x 1 − x 2 ∣ ∣ c o s θ ( θ 为 两 个 向 量 的 夹 角 ) ⇒ w T x 1 − w T x 2 = ∣ ∣ w ∣ ∣ ∣ ∣ x 1 − x 2 ∣ ∣ c o s θ w^Ta=w^T(x_1-x_2)=||w||||x_1-x_2||cos\theta(\theta为两个向量的夹角)\\ \Rightarrow w^Tx_1-w^Tx_2=||w||||x_1-x_2||cos\theta wTa=wT(x1x2)=wx1x2cosθ(θ)wTx1wTx2=wx1x2cosθ
由于 w T x 2 + b = 0 w^Tx_2+b=0 wTx2+b=0,故上式可转化为:
⇒ w T x 1 + b = ∣ ∣ w ∣ ∣ ∣ ∣ x 1 − x 2 ∣ ∣ c o s θ \Rightarrow w^Tx_1+b=||w||||x_1-x_2||cos\theta wTx1+b=wx1x2cosθ
显然, 通过几何关系可知, x 1 x_1 x1到超平面的距离 r = ∣ ∣ a ∣ ∣ ∣ c o s θ ∣ r=||a|||cos\theta|

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值