MS COCO数据集的下载、介绍与使用(目标检测)(一)

本文详细介绍MSCOCO数据集的下载与使用方法,涵盖数据集结构、目标检测标注文件解析及COCO API的安装配置等内容。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

博主最近一直都在潜心研究YOLOv5,先用的VOC数据集做了训练,发现性能还不错,现在打算利用MS COCO对于模型进行复现。
博主看的第一篇论文所用的数据集就是有20个类别的Pascal VOC数据集和80个物体类别的MS COCO,这些数据集在时间的推移下都变得越来越大(比如Pascal VOC 从2007的400M到后来的VOC2012快2个G)
今天,我们就来学一学MS COCO数据集的使用方法。

下载数据集

微软发布的 COCO 数据库是一个大型图像数据集, 专为目标检测、分割、人体关键点检测、语义分割和字幕生成而设计,用于Object Detection + Segmentation + Localization + Captioning。
下载链接如下,数据包括了物体检测和keypoints身体关键点的检测:

直接用迅雷下载的,感觉速度还行。
在这里插入图片描述

数据集介绍

下载并解压之后发现annotation全部都合并了,然后还有test2017train2017val2017分别对应测试集、训练集和验证集。
在这里插入图片描述

  • test2017:40670张图片
  • train2017:118287张图片
  • val2017:5000张图片

annotation中,有很多分类的json格式文件,其中文件对应的任务如下:

  • instances:目标检测
  • captions:字幕生成,图片描述
  • person_keypoints:关键点检测
  • stuff_train/val:素材分割(Stuff Segmentation)

在官网给出的五大任务中,还有一个任务叫做panoptic segmentation全景分割,是和图像分割有关的。官网的data format介绍
deprecated-challenge2017文件夹下的数据没有annotations,简单的对数据集进行训练集和验证集的划分。
image_info:图片信息,应该是比赛中用到的吧
在这里插入图片描述

目标检测标注文件

这里只详细介绍目标检测任务的json文件。
打开json文件已经把我的眼睛看花了,还是看一下官网介绍

annotation{
   
    "id": int,
    "image_id": int,
    "category_id": int,
    "segmentation": RLE or [polygon],
    "area": float,
    "bbox": [x,y,width,height],
    "iscrowd": 
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Vanessa Ni

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值