动手学数据分析(五)- 模型建立和评估

1 初心

本系列笔记用于记录自己第一次参加Datawhale的组队学习。自己马上开启研究生学习生涯,因此熟练掌握数据分析这一重要技能对未来的学习能够提供很大的帮助,Datawhale团队在项目初衷里说数据分析是一个要从一堆数字中看到真相的过程。学会操作数据只是数据分析的一半功力,剩下的另一半要用我们的大脑,多多思考,多多总结,更要多动手,实打实的的敲代码。所以也希望在学习这门课时,多去推理,多去问问为什么;多多练习,确保理论实践结合起来,在课程结束的时候一定会有大收获。

因此希望自己再接下来的11天里面能够实事求是、脚踏实地完成各项任务,提高自己的硬实力。

特别喜欢一句话:也许不负光阴就是最好的努力,而努力就是最好的自己。

学习内容: 经过前面的两章的知识点的学习,我可以对数数据的本身进行处理,比如数据本身的增删查补,还可以做必要的清洗工作。那么下面我们就要开始使用我们前面处理好的数据了。这一章我们要做的就是使用数据,我们做数据分析的目的也就是,运用我们的数据以及结合我的业务来得到某些我们需要知道的结果。那么分析的第一步就是建模,搭建一个预测模型或者其他模型;我们从这个模型的到结果之后,我们要分析我的模型是不是足够的可靠,那我就需要评估这个模型。今天我们学习建模,下一节我们学习评估。

我们拥有的泰坦尼克号的数据集,那么我们这次的目的就是,完成泰坦尼克号存活预测这个任务。
首先,我们载入这些库

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from IPython.display import Image
%matplotlib inline
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号
plt.rcParams['figure.figsize'] = (10, 6)  # 设置输出图片大小

读取训练数集

train = pd.read_csv('train.csv')
train.shape
train.head()

在这里插入图片描述

2 特征工程

2.1 缺失值填充

对分类变量缺失值:填充某个缺失值字符(NA)、用最多类别的进行填充
对连续变量缺失值:填充均值、中位数、众数

对分类变量进行填充

train['Cabin'] = train['Cabin'].fillna('NA')
train['Embarked'] = train['Embarked'].fillna('S')

对连续变量进行填充

train['Age'] = train['Age'].fillna(train['Age'].mean())

检查缺失值比例

train.isnull().sum().sort_values(ascending=False)

在这里插入图片描述

2.2 编码分类变量

取出所有的输入特征

data = train[['Pclass','Sex','Age','SibSp','Parch','Fare', 'Embarked']]

进行虚拟变量转换

data = pd.get_dummies(data)
data.head()

在这里插入图片描述

3 模型搭建

  • 处理完前面的数据我们就得到建模数据,下一步是选择合适模型
  • 在进行模型选择之前我们需要先知道数据集最终是进行监督学习还是无监督学习
  • 除了根据我们任务来选择模型外,还可以根据数据样本量以及特征的稀疏性来决定
  • 刚开始我们总是先尝试使用一个基本的模型来作为其baseline,进而再训练其他模型做对比,最终选择泛化能力或性能比较好的模型

sklearn模型算法选择路径图
在这里插入图片描述

3.1 测试集和训练集的划分

  • 按比例切割训练集和测试集(一般测试集的比例有30%、25%、20%、15%和10%)
  • 按目标变量分层进行等比切割
  • 设置随机种子以便结果能复现

提示:

  • 切割数据集是为了后续能评估模型泛化能力
  • sklearn中切割数据集的方法为train_test_split
  • 查看函数文档可以在jupyter noteboo里面使用train_test_split?后回车即可看到
  • 分层和随机种子在参数里寻找
from sklearn.model_selection import train_test_split

一般先取出X和y后再切割,有些情况会使用到未切割的,这时候X和y就可以用

X = data
y = train['Survived']

对数据集进行切割

X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, random_state=0)

查看数据形状

X_train.shape, X_test.shape

在这里插入图片描述

3.2 模型创建

  • 创建基于线性模型的分类模型(逻辑回归)
  • 创建基于树的分类模型(决策树、随机森林)
  • 查看模型的参数,并更改参数值,观察模型变化

提示

  • 逻辑回归不是回归模型而是分类模型,不要与LinearRegression混淆
  • 随机森林其实是决策树集成为了降低决策树过拟合的情况
  • 线性模型所在的模块为sklearn.linear_model
  • 树模型所在的模块为sklearn.ensemble
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier

3.2.1 默认参数逻辑回归模型

lr = LogisticRegression()
lr.fit(X_train, y_train)

在这里插入图片描述
查看训练集和测试集score值

# 查看训练集和测试集score值
print("Training set score: {:.2f}".format(lr.score(X_train, y_train)))
print("Testing set score: {:.2f}".format(lr.score(X_test, y_test)))

在这里插入图片描述
调整参数后的逻辑回归模型

lr2 = LogisticRegression(C=100)
lr2.fit(X_train, y_train)

在这里插入图片描述

print("Training set score: {:.2f}".format(lr2.score(X_train, y_train)))
print("Testing set score: {:.2f}".format(lr2.score(X_test, y_test)))

在这里插入图片描述

3.2.2 默认参数的随机森林分类模型

rfc = RandomForestClassifier()
rfc.fit(X_train, y_train)

在这里插入图片描述

print("Training set score: {:.2f}".format(rfc.score(X_train, y_train)))
print("Testing set score: {:.2f}".format(rfc.score(X_test, y_test)))

在这里插入图片描述
调整参数后的随机森林分类模型

rfc2 = RandomForestClassifier(n_estimators=100, max_depth=5)
rfc2.fit(X_train, y_train)

在这里插入图片描述

print("Training set score: {:.2f}".format(rfc2.score(X_train, y_train)))
print("Testing set score: {:.2f}".format(rfc2.score(X_test, y_test)))

在这里插入图片描述

3.3 输出模型预测结果

  • 输出模型预测分类标签
  • 输出不通分类标签的预测概率

提示:

  • 一般监督模型在sklearn里面有个predict能输出预测标签,predict_proba则可以输出标签概率

预测标签

pred = lr.predict(X_train)

此时我们可以看到0和1的数组

pred[:10]

在这里插入图片描述
预测标签概率

pred_proba = lr.predict_proba(X_train)
pred_proba[:10]

在这里插入图片描述

4 模型评估

  • 模型评估是为了知道模型的泛化能力。
  • 交叉验证(cross-validation)是一种评估泛化性能的统计学方法,它比单次划分训练集和测试集的方法更加稳定、全面。
  • 在交叉验证中,数据被多次划分,并且需要训练多个模型。
  • 最常用的交叉验证是 k 折交叉验证(k-fold cross-validation),其中 k 是由用户指定的数字,通常取 5 或 10。
  • 准确率(precision)度量的是被预测为正例的样本中有多少是真正的正例
  • 召回率(recall)度量的是正类样本中有多少被预测为正类
  • f-分数是准确率与召回率的调和平均

4.1 交叉验证

  • 用10折交叉验证来评估逻辑回归模型
  • 计算交叉验证精度的平均值
Image('Snipaste_2020-01-05_16-37-56.png')

在这里插入图片描述
交叉验证在sklearn中的模块为sklearn.model_selection

from sklearn.model_selection import cross_val_score
lr = LogisticRegression(C=100)
scores = cross_val_score(lr, X_train, y_train, cv=10)

k折交叉验证分数

scores

在这里插入图片描述
平均交叉验证分数

print("Average cross-validation score: {:.2f}".format(scores.mean()))

在这里插入图片描述

4.2 混淆矩阵

  • 计算二分类问题的混淆矩阵
  • 计算精确率、召回率以及f-分数
Image('Snipaste_2020-01-05_16-38-26.png')

在这里插入图片描述

Image('Snipaste_2020-01-05_16-39-27.png')

在这里插入图片描述
提示:

  • 混淆矩阵的方法在sklearn中的sklearn.metrics模块
  • 混淆矩阵需要输入真实标签和预测标签
from sklearn.metrics import confusion_matrix

训练模型

lr = LogisticRegression(C=100)
lr.fit(X_train, y_train)

模型预测结果

pred = lr.predict(X_train)

混淆矩阵

confusion_matrix(y_train, pred)

在这里插入图片描述

from sklearn.metrics import classification_report

精确率、召回率以及f1-score

print(classification_report(y_train, pred))

在这里插入图片描述

4.3 ROC曲线

绘制ROC曲线
提示:

  • ROC曲线在sklearn中的模块为sklearn.metrics
  • ROC曲线下面所包围的面积越大越好
from sklearn.metrics import roc_curve
fpr, tpr, thresholds = roc_curve(y_test, lr.decision_function(X_test))
plt.plot(fpr, tpr, label="ROC Curve")
plt.xlabel("FPR")
plt.ylabel("TPR (recall)")
# 找到最接近于0的阈值
close_zero = np.argmin(np.abs(thresholds))
plt.plot(fpr[close_zero], tpr[close_zero], 'o', markersize=10, label="threshold zero", fillstyle="none", c='k', mew=2)
plt.legend(loc=4)

在这里插入图片描述

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值