图像处理中的用于消除高斯噪声的加法运算

加法运算作为图像增强的一种手段,常用于去除叠加性噪声。通过将图像的每个像素点灰度级与另一灰度级相加,可以有效地处理噪声图像。当噪声为理想状态均值为0时,通过相加n幅图像并取平均,可以逐渐恢复原本的图像。随着n的增大,图像的噪声影响减小,使得像素点更接近原始灰度级,从而提升图像质量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        加法运算属于图像增强中的空间域增强(还有频域增强)的代数运算(还有灰度变换、空间域滤波)中的运算。

        公式:c(x,y)=A(x,y)+A(x,y)

        应用:去除叠加性噪声

也就是说,(x,y)位置处的灰度级进行相加。叠加性噪声可以看成一种覆盖:例如亮度为0/255的黑色/白块,从灰度级数值上进行简单的相加,其灰度级并没有变化,但该位置的视觉效果是一个黑块或白块,因此,该加法运算可处理的叠加过噪声(理想状态均值为0,实际为小于1)的图像 可以理解为噪声图像的覆盖。

例:

        现有n幅已知的图像:g{i}(x,y)=f(x,y)+n{i}(x,y),i=1,2,...,n,  已知n{i}(x,y)的均值为0且互不相关,则n幅已知的图像的均值为f(x,y),即去除了高斯噪声。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值