欧拉法和Runge-Kutta(龙格-库塔)方法

Euler方法有各种格式,但其精度最高不超过2阶,一般难以满足实际计算的精度要求。因此,有必要构造精度更高的数值计算公式求解微分方程。Runge-Kutta方法就是一种高精度的经典的解常微分方程的单步方法

下面是欧拉法例子:

参考链接: 

写的比较好的文章见:Runge-Kutta(龙格-库塔)方法 | 基本思想 + 二阶格式 + 四阶格式-CSDN博客

比较清楚的视频:手把手超级保姆级-由欧拉法到四阶龙格库塔法-从原理到程序实现!_哔哩哔哩_bilibili平

评论区里推荐的(感觉不错):

【机电田老师】数值分析:常微分方程的数值解法_哔哩哔哩_bilibili

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

热爱生活的五柒

谢谢你的打赏,人好心善的朋友!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值