CFDBench:流体动力学机器学习方法的大规模基准
论文:https://arxiv.org/abs/2310.05963
注意:这里的案例的几何形状都是恒定的,不随时间变化。
deeponet的输入输出:通过在特定时间步 t
使用帧中的所有点(label
)作为训练样本来加速前向传播
原deeponet论文的forward函数:
普通DeepONet的实现, 慢点!本文的“forward”速度更快,因为它重复使用了输出 一批中不同查询的分支网。
参数:
- x_branch:(b,branch_dim),分支网络的输入。
- x_trunk: (b),输入到trunk net,一批(t, x, y) 这里trunk输入的是多个具体时间的坐标。
- label:(b),查询位置的标签。
Return:
- if label is None:
- preds: (b, k), the prediction for the query location.
- else:
- preds: (b, k), the prediction for the query location.
- loss: (b, k), the loss for the query location.
"""
本文修改的forward:
"""
A faster forward by using all the points in the frame (`label`) at
time step `t` as training examples.
Args:
- x_branch: (b, branch_dim), input to the branch net.
- t: (b), input to the trunk net, a batch of t
- label: (b, w, h), the frame to be predicted.
- query_idxs: (b, k, 2), the query locations.
"""
摘要:
构建了 CFDBench,这是一个专门用于评估神经算子在计算流体动力学 (CFD) 问题训练后的泛化能力的基准。
它具有四个经典的 CFD 问题:盖子驱动的空腔流、圆管中的层流边界层流、穿过台阶的坝流和周期性卡门涡街。
该数据包含总共302K帧速度场和压力场,涉及739个不同工况参数的工况,通过数值方法生成。
我们通过预测训练期间未见的非周期边界条件、流体属性和流域形状(其中 BC 始终是周期性的,并且物理属性和几何形状也是恒定的。在2.4小节中声明的)来评估流行的神经算子(包括前馈网络、DeepONet、FNO、U-Net 等)在 CFDBnech 上的有效性。
四个问题称为(1)腔流, (2)管流, (3)坝流和(4)圆柱流。对于每个问题,我们使用不同的操作参数并使用数值方法生成流场。
我们将每个问题的数据分为三个子集:BC、PROP 和 GEO(分别是边界条件、流体属性和流域形状)。然后,我们使用七种不同的组合(PROP、BC、GEO、PROP + BC、PROP + GEO、BC + GEO、All)来评估各种基线方法沿不同维度的泛化能力。子集中数据的具体数量如图6所示,每个组合都是两个子集中所有数据的总和。
主要贡献:
1. 我们构建并发布了第一个为 CFD 数据驱动深度学习量身定制的基准,涵盖具有不同 边界条件、流体属性和域几何形状的四个经典 CFD 问题。
2. 有些神经网络不能直接应用于CFDBench,我们演示如何修改它们以有效地应用于CFDBench中的问题。
3.我们在CFDBench上评估了一些流行的神经网络,并表明它比以前的工作中使用的许多虚拟问题更具挑战性,揭示了在这些算子取代传统求解器之前需要解决的一些问题。
案例情况
在这项工作中,我们考虑了四个重要且有代表性的流体问题,可以综合评估不同方法在不同问题上的能力。它们是(1)盖子驱动腔中的流动,(2)进入圆管的流动,(3)破坝中的流动,以及(4)圆柱体周围的流动。这些流动问题涵盖了大部分常见的流动现象。
溃坝流展示
训练目标:
>>>>>>>>>个人解释
非自回归建模(deeponet、FFN)中,输入函数 Σ 是一个查询位置 (𝑥,𝑦,𝑡) 模型直接输出该位置的解(速度u)。也就是查询具体时间和空间的u的值。
自回归建模(fno、wno、cnn)与传统数值方法类似,学习流场从当前时间步到下一个时间步的映射。因此,它按照时间顺序预测每个时刻的流场分布。也就是根据上一个时间的速度的得到下一个时间的速度。
模型架构
FFN
deeponet
tips:auto指自回归,也就是deeponet和FFN这俩。
结论:
通过分析CFDBench上基线的单步和多步预测,我们发现U-Net最适合无源项(重力)的流动问题,FNO最适合周期性涡流现象,自回归最适合DeepONetCNN 最适合解决重力坝流问题。非自回归模型具有网格独立性的优点,在流场变化相对较小的流动问题上表现良好,例如腔流和坝流,但在管流和圆柱流问题上收敛困难。在多步推理的结果中,全连接神经网络明显优于卷积神经网络,非自回归模型始终优于自回归模型。随着外推时间的延长,均方根误差最终变得稳定