最长公共子序列(LeetCode)

题目链接

题目描述

给定两个字符串 text1 和 text2,返回这两个字符串的最长公共子序列的长度。

一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。
例如,“ace” 是 “abcde” 的子序列,但 “aec” 不是 “abcde” 的子序列。两个字符串的「公共子序列」是这两个字符串所共同拥有的子序列。

若这两个字符串没有公共子序列,则返回 0。

示例 1:

输入:text1 = "abcde", text2 = "ace" 
输出:3  
解释:最长公共子序列是 "ace",它的长度为 3。

示例 2:

输入:text1 = "abc", text2 = "abc"
输出:3
解释:最长公共子序列是 "abc",它的长度为 3。

示例 3:

输入:text1 = "abc", text2 = "def"
输出:0
解释:两个字符串没有公共子序列,返回 0。

提示:

1 <= text1.length <= 1000
1 <= text2.length <= 1000
输入的字符串只含有小写英文字符。

思路

动态规划~

在求X = <x1,x2,…,xm>和Y = <y1,y2,…,yn>的一个LCS时,我们需要求解一个或两个子问题。如果xm = yn,我们应该求解xm-1和yn-1的一个LCS,用xm-1和yn-1的LCS长度加上1就能得到xm和yn的LCS;如果xm ≠ yn,我们必须求解两个子问题:xm-1和yn的一个LCS 和 xm和yn-1的一个LCS。两个较长者应该为xm和yn的一个LCS。

递推公式如下:

在这里插入图片描述
代码如下:

class Solution {
public:
    int longestCommonSubsequence(string text1, string text2) {
        int len1=text1.size(),len2=text2.size();
        vector<vector<int> > arr(len1+1);
        for(auto &i:arr)
            i.resize(len2+1,0);
        for(int i=1;i<len1+1;i++)
        for(int j=1;j<len2+1;j++){
            if(text1[i-1]==text2[j-1])
                arr[i][j]=arr[i-1][j-1]+1;
            else
                arr[i][j]=max(arr[i-1][j],arr[i][j-1]);
        }
        return arr[len1][len2];
    }
};
©️2020 CSDN 皮肤主题: 1024 设计师:上身试试 返回首页