【Matlab】深度学习AlexNet五倍交叉验证

本文介绍了如何在Matlab中利用预训练的AlexNet模型进行深度学习,并进行了五倍交叉验证。内容包括图片数据的划分及迁移学习的应用,旨在帮助读者掌握相关技能。
摘要由CSDN通过智能技术生成

使用matlab 上的预训练模型
网络迁移学习的结果进行处理
将图片数据分为0.7/0.3,进行五倍交叉验证

data = imageDatastore( 'D:\transferLeaning\fengeFigure\',...  %分类文件地址fengeFigure有两个文件夹,分别装有二分类图片
                       'IncludeSubfolders',true,...
                       'LabelSource','foldernames',...
                       'ReadFcn',@IMAGERESIZE);
n=length(data.Labels);
data=shuffle(data);
[dataTrain,dataValid] = splitEachLabel(data,0.7,0.3);

%交叉验证
k = 5;
%将数据样本随机分割为5部分
datastore = imageDatastore(fullfile('fengeFigure'),...  
                       &
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值