Docker Compose部署大语言模型LLaMa3+可视化UI界面Open WebUI

一、介绍

  • Ollama:部署+运行大语言模型的软件
  • LLaMa3:史上最强开源AI大模型 — Meta公司新发布的大语言模型
  • Open WebUI:AI用户界面,可通过浏览器访问

二、Docker部署

docker-compose.yml文件如下:

version: '3'

services:
  ollama:
    container_name: bruce-ollama
    image: ollama/ollama
    volumes:
      - ./runtime/ollama:/root/.ollama
      - ./config/models:/data/models
    environment:
      - TZ=Asia/Shanghai
    ports:
      - "11434:11434"
    networks:
      - public

  open-webui:
    container_name: bruce-open-webui
    image: m.daocloud.io/ghcr.io/op
<think>好的,用户想了解如何通过Docker部署Open-WebUI与Ollama,需要教程或指南。首先,我需要回忆一下Docker的基本操作,因为用户可能对Docker不太熟悉,所以需要先简单提一下Docker的作用,但根据引用中的内容,引用[3]已经解释了Docker,所以可能不需要详细说明。 接下来,用户需要具体的部署步骤。Open-WebUI和Ollama都是需要容器化的应用。Ollama可能是一个后端服务,而Open-WebUI是前端界面。需要确认这两个服务是否有现成的Docker镜像,或者是否需要自己构建。根据常见的部署方式,可能Ollama有官方镜像,而Open-WebUI可能需要从GitHub拉取或者构建。 然后,用户可能需要使用Docker Compose来编排这两个服务,这样方便管理容器之间的网络连接。例如,Ollama可能在某个端口运行,而Open-WebUI需要连接到这个端口。因此,在docker-compose.yml中需要定义两个服务,并设置网络和端口映射。 另外,用户可能需要了解如何配置环境变量,比如指定Ollama的API地址。例如,Open-WebUI可能需要通过环境变量连接到Ollama的后端。需要检查Open-WebUI的文档,确认需要哪些环境变量。 还有,持久化存储的问题。Ollama可能下载模型到本地,所以需要将卷挂载到容器中,防止数据丢失。同样,Open-WebUI可能有配置文件需要持久化。 用户可能遇到的问题包括网络配置错误、环境变量未正确设置、镜像拉取失败等。需要给出常见问题的解决方法,比如检查端口是否开放,查看容器日志等。 最后,根据引用中的信息,引用[1]提到使用docker stack deploy进行动态部署,但用户可能更熟悉docker-compose up,所以需要说明两种方法,但以docker-compose为主,因为更简单。引用[2]中的脚本执行方法可能对用户有帮助,但可能需要调整步骤。 总结步骤:安装Docker -> 编写docker-compose.yml -> 配置服务和环境变量 -> 启动容器 -> 验证部署。同时需要确保版本兼容性,比如Docker版本是否支持Compose的语法。 需要验证每个步骤的正确性,例如Ollama的镜像名称是否正确,端口是否匹配,网络是否连通。可能还需要提醒用户查看官方文档获取最新信息,因为Docker镜像可能会有更新。 最后生成相关问题,需要涵盖Docker基础、网络配置、持久化存储、性能优化等方面的问题,帮助用户深入理解。</think>以下是通过Docker部署Open-WebUI与Ollama的分步指南: ### 一、准备工作 1. 安装DockerDocker Compose 确保系统已安装Docker Engine(版本≥20.10)和Docker Compose(版本≥2.17)。验证命令: ```bash $ docker --version && docker compose version ``` 2. 创建项目目录 ```bash $ mkdir openwebui-ollama && cd openwebui-ollama ``` ### 二、配置Docker Compose 创建`docker-compose.yml`文件,内容如下: ```yaml version: &#39;3.8&#39; services: ollama: image: ollama/ollama:latest ports: - "11434:11434" volumes: - ollama_data:/root/.ollama networks: - ai-net open-webui: image: ghcr.io/open-webui/open-webui:main ports: - "3000:8080" environment: - OLLAMA_API_BASE_URL=http://ollama:11434/api depends_on: - ollama volumes: - openwebui_data:/app/backend/data networks: - ai-net volumes: ollama_data: openwebui_data: networks: ai-net: driver: bridge ``` ### 三、关键配置说明 1. **Ollama服务** - 使用官方镜像`ollama/ollama` - 通过卷`ollama_data`持久化模型数据 - 暴露API端口`11434`,供Open-WebUI调用[^3] 2. **Open-WebUI服务** - 使用GitHub容器镜像`ghcr.io/open-webui/open-webui` - 通过环境变量`OLLAMA_API_BASE_URL`指定后端地址 - 将Web界面映射到宿主机的`3000`端口 3. **网络配置** - 创建自定义桥接网络`ai-net`,确保容器间通过服务名通信 ### 四、部署与验证 1. 启动服务 ```bash $ docker compose up -d ``` 2. 检查容器状态 ```bash $ docker compose ps ``` 3. 访问服务 - Open-WebUI:浏览器访问`http://localhost:3000` - Ollama API:验证端点`http://localhost:11434` ### 五、模型管理示例 1. 通过Open-WebUI下载模型 ```bash $ docker exec ollama ollama pull llama2 ``` 2. 查看已下载模型 ```bash $ docker exec ollama ollama list ``` ### 六、常见问题排查 1. **端口冲突** 修改`docker-compose.yml`中的宿主机端口映射,如将`3000:8080`改为`3001:8080` 2. **容器启动失败** 查看日志定位问题: ```bash $ docker compose logs ollama ``` 3. **模型加载失败** 检查存储卷权限: ```bash $ docker volume inspect openwebui-ollama_ollama_data ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

声声不语的程序人生

你的鼓励将给我莫大的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值