题目描述:
假设存在一个 k 位数 N,其每一位上的数字的 k 次幂的总和也是 N,那么这个数是阿姆斯特朗数。
给你一个正整数 N,让你来判定他是否是阿姆斯特朗数,是则返回 true,不是则返回 false。
示例 1:
输入:153
输出:true
示例:
153 是一个 3 位数,且 153 = 1^3 + 5^3 + 3^3。
示例 2:
输入:123
输出:false
解释:
123 是一个 3 位数,且 123 != 1^3 + 2^3 + 3^3 = 36。
提示:
1 <= N <= 10^8
方法1:
主要思路:
(1)先将原数字转成对应的字符串,确定出大小;
(2)再将数字解析成对应的位的幂的和;
(3)判读解析出来的数字是否和原数字相同即可;
class Solution {
public:
bool isArmstrong(int N) {
int tmp=N;
int new_N=0;
string str=to_string(N);
int n=str.size();//获得幂
while(tmp){
new_N+=pow(tmp%10,n);//将对应的位的数字的幂加到结果中
tmp/=10;
}
return new_N==N;//判断是否满足要求
}
};