1134 阿姆斯特朗数

题目描述:
假设存在一个 k 位数 N,其每一位上的数字的 k 次幂的总和也是 N,那么这个数是阿姆斯特朗数。
给你一个正整数 N,让你来判定他是否是阿姆斯特朗数,是则返回 true,不是则返回 false。

示例 1:
输入:153
输出:true
示例:
153 是一个 3 位数,且 153 = 1^3 + 5^3 + 3^3。

示例 2:
输入:123
输出:false
解释:
123 是一个 3 位数,且 123 != 1^3 + 2^3 + 3^3 = 36。

提示:
1 <= N <= 10^8

方法1:
主要思路:
(1)先将原数字转成对应的字符串,确定出大小;
(2)再将数字解析成对应的位的幂的和;
(3)判读解析出来的数字是否和原数字相同即可;

class Solution {
public:
    bool isArmstrong(int N) {
        int tmp=N;
        int new_N=0;
        string str=to_string(N);
        int n=str.size();//获得幂
        while(tmp){
            new_N+=pow(tmp%10,n);//将对应的位的数字的幂加到结果中
            tmp/=10;
        }
        return new_N==N;//判断是否满足要求
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值