题目描述:
给你一个整数数组 nums 和一个正整数 threshold ,你需要选择一个正整数作为除数,然后将数组里每个数都除以它,并对除法结果求和。
请你找出能够使上述结果小于等于阈值 threshold 的除数中 最小 的那个。
每个数除以除数后都向上取整,比方说 7/3 = 3 , 10/2 = 5 。
题目保证一定有解。
示例 1:
输入:nums = [1,2,5,9], threshold = 6
输出:5
解释:如果除数为 1 ,我们可以得到和为 17 (1+2+5+9)。
如果除数为 4 ,我们可以得到和为 7 (1+1+2+3) 。如果除数为 5 ,和为 5 (1+1+1+2)。
示例 2:
输入:nums = [2,3,5,7,11], threshold = 11
输出:3
示例 3:
输入:nums = [19], threshold = 5
输出:4
提示:
1 <= nums.length <= 5 * 10^4
1 <= nums[i] <= 10^6
nums.length <= threshold <= 10^6
方法1:
主要思路:解题汇总链接
(1)二分;
(2)确定二分的范围1到nums中的最大值的加一;
(3)确定中值是否满足给定的阈值条件,若满足,则变换右边界,同时保存当前中值,若不满足,则变换左边界;
class Solution {
public:
bool check(vector<int>&nums,int threshold,int div){//判读当前值div是否能够满足阈值条件
int res=0;
for(int&n:nums){
res+=n/div;
if(n%div){
++res;
}
if(res>threshold){//不满足直接返回false
return false;
}
}
return true;//说明满足
}
int smallestDivisor(vector<int>& nums, int threshold) {
int left=1;//确定左边界
int right=(*max_element(nums.begin(),nums.end()))+1;//确定右边界
int res=0;
while(left<=right){
int mid=left+(right-left)/2;//中值
if(check(nums,threshold,mid)){
right=mid-1; //调整右边界
res=mid;//同时保存当前满足条件的中值
}
else{
left=mid+1;
}
}
return res;
}
};