python实现矩阵共轭和共轭转置

python实现矩阵共轭和共轭转置

(以IDLE上操作为例。完整代码在下方)
创建一个矩阵:

>>> import numpy as np
>>> e = np.mat("1 2+3j;3 4+5j")

或使用第二种方法创建矩阵(不推荐):

>>> e = [[1, 2+3j],[3, 4+5j]]
>>> e = np.matrix(a)

输出矩阵:

>>> e
matrix([[1.+0.j, 2.+3.j],
        [3.+0.j, 4.+5.j]])

使用 conjugate() 函数实现共轭:

>>> e.conjugate()
matrix([[1.-0.j, 2.-3.j],
        [3.-0.j, 4.-5.j]])

共轭就是对一个复数的虚部求反。共轭转置就是转置后再求共轭。python里复数用 j 来代表数学中的复数 i
求共轭转置:

>>> e.T.conjugate()
matrix([[1.-0.j, 2.-0.j]
        [0.-2.j, 6.-5.j]])

完整代码:

import numpy as np

# 使用mat() 创建矩阵以 ; 隔开每一行,句号隔开行中的列。
e = np.mat("1 2+3j;3 4+5j")
print("原矩阵:\n", e)
# 共轭矩阵
print("共轭矩阵:\n", e.conjugate())
# 共轭转置
print("共轭转置: \n", e.T.conjugate())
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值