GraphCut图像分割Python实现

本文介绍了一种基于Python的最大流最小流算法在图像分割中的应用。通过将图像转换为加权无向图,利用Ford-Fulkerson算法寻找增广路径来分割图像。用户可以标记图像区域,程序执行切割并显示结果,最后允许用户保存切割后的图像。程序代码可在Github上找到。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

使用最大流最小流算法实现图割,基于Python的程序。


程序代码 https://github.com/DamonZCR/GraphCut.git

话不多说,下面就是介绍.

一、图割

#废话还是要说点的,显得大气些。

图像分割作为计算机视觉领域的基础研究方向,多年来一直受到众多研究人员的密切关注,经过多年发展,广大学者提出了许多有效的图像分割算法,本文将图像分割问题与图论中的Ford-Fulkerson标号算法相关联。Ford-Fulkerson标号算法总的来说就是不断地在图中找增广路径(一条从源点到汇点的路径,所有前向边都是非饱和边,反向边都是非零边)。图像分割方法的原理是将图像映射为加权无向图,并通过最大流最小截定理求得其最小截,从而分割出图像中的目标。

二、运行

程序实现添加待操作的图像,用户进行画笔标记需要切分的两块区域,点击运行。首先会展示将要切割输出的图像,以红色背景为标记。之后用户可选择是否保存切割输出。

结果

原图(示例):输入待割取图片操作图(标记出切割区域):正在被操作的图片初切割展示:在这里插入图片描述切割后的保存输出图片:切割后的输出图片

三、主要代码

主文件GraphCut.py :

# coding=utf-8
import CutUI
if __name__ == '__main__':
	# 参数1:输入文件,参数2:输出文件。
    ui = CutUI.CutUI('resource/1.jpg', 'resource/new.jpg')
    ui.run()

图片操作GraphMaker.py主要方法 :

    def cut_graph(self):
        self.segment_overlay = np.zeros_like(self.segment_overlay)
        self.mask = np.zeros_like(self.image, dtype=bool)
        g = maxflow.Graph[float](len(self.nodes), len(self.edges))
        nodelist = g.add_nodes(len(self.nodes))

        for node in self.nodes:
            g.add_tedge(nodelist[node[0]], node[1], node[2])

        for edge in self.edges:
            g.add_edge(edge[0], edge[1], edge[2], edge[2])
        # 对图片开始执行切割
        g.maxflow()

        for index in range(len(self.nodes)):
            if g.get_segment(index) == 1:
                xy = self.get_xy(index, self.image.shape)
                self.segment_overlay[xy[1], xy[0]] = (255, 0, 255)
                self.mask[xy[1], xy[0]] = (True, True, True)

上面的这段代码只是GraphMaker.py中的方法之一。

运行时,控制台输出:
正在切割图片:

正在切割,输出图片像素及切割过程
保存输出图片完成:
在这里插入图片描述


四、总结

程序的运行方法在Github中,打个⭐标记住哦😝。
希望大家批评学习!

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值