【计算智能】粒子群算法-非线性函数极值寻优

粒子群算法

算法的介绍

粒子群算法,也称粒子群优化算法或鸟群觅食算法(Particle Swarm Optimization),缩写为 PSO, 是近年来由J. Kennedy和R. C. Eberhart等 开发的一种新的进化算法(Evolutionary Algorithm - EA)。PSO 算法属于进化算法的一种,和模拟退火算法相似,它也是从随机解出发,通过迭代寻找最优解,它也是通过适应度来评价解的品质,但它比遗传算法规则更为简单,它没有遗传算法的"交叉"(Crossover) 和"变异"(Mutation) 操作,它通过追随当前搜索到的最优值来寻找全局最优。这种算法以其实现容易、精度高、收敛快等优点引起了学术界的重视,并且在解决实际问题中展示了其优越性。粒子群算法是一种并行算法。(源自360百科)

算法的基本原理

粒子群算法通过对测试函数空间进行随机放置粒子

算法的基本流程

1、初始化
将速度进行局限,来保证其有效性。利用随机函数随机初始化速度和位置。根据维度等有关空间大小来设置群体规模。
2、找到初始个体极值与全局最优解
pbest为每个粒子找到的历史上最优的位置信息,并从这些个体历史最优解中找到一个全局最优解gbest,并与历史最优解比较,选出最佳的作为当前的历史最优解。
3、寻找并更新速度和位置从而获取全局最优解
更新公式为: 在这里插入图片描述在这里插入图片描述

其中,称为w惯性因子,c1和c2称为加速常数,一般取1~2。c1主要控制个体自信度,c2主要控制全体自信度,即依赖个体和全局的参数,数值越大则速度和路线选择即更偏重。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值