题目描述
AA国有nn座城市,编号从 11到nn,城市之间有 mm 条双向道路。每一条道路对车辆都有重量限制,简称限重。现在有 qq 辆货车在运输货物, 司机们想知道每辆车在不超过车辆限重的情况下,最多能运多重的货物。
输入格式
第一行有两个用一个空格隔开的整数n,mn,m,表示 AA 国有nn 座城市和 mm 条道路。
接下来 mm行每行33个整数 x, y, zx,y,z,每两个整数之间用一个空格隔开,表示从 xx号城市到yy号城市有一条限重为 zz 的道路。注意: ** xx 不等于 yy,两座城市之间可能有多条道路 ** 。
接下来一行有一个整数 q,表示有 q 辆货车需要运货。
接下来 q 行,每行两个整数 x、y,之间用一个空格隔开,表示一辆货车需要从 x 城市运输货物到 y 城市,注意: ** x 不等于 y ** 。
输出格式
共有 qq 行,每行一个整数,表示对于每一辆货车,它的最大载重是多少。如果货车不能到达目的地,输出-1−1。
输入输出样例
输入 #1
4 3
1 2 4
2 3 3
3 1 1
3
1 3
1 4
1 3
输出 #1
3
-1
3
说明/提示
0<n<10,000,0<m<50,000,0<q<30,000,0≤z≤100,000。
思路:
一种思路是构建最大生成树+LCA查询路径中最小值
这里就不挂了
记录一下kruskal重构树做法
kruskal重构树模板题
kruskal重构树的基本操作就是求x到y路径上最小距离的最大值(或者最大距离的最小值)
这题可能不是树是森林,开了mark数组记录节点是否访问过
查询之前要先判断一下是否在同一棵树(并查集)
–
构建过程:
!!!这题用的是边权从大到小排序,实际操作也可以从小到大!!!
在kruskal求最小(最大)生成树中,如果一条边连接了在2个不同集合中的点的话,就合并这2个点所在集合。
在建立kruskal重构树的过程中中,如果一条边连接了在2个不同集合中的点的话,就建立一个新的一个节点出来,并用这个新节点作为一个中转点连接这2个集合,新节点的点权即为边权
例如题目案例1:
4 3
1 2 4
2 3 3
3 1 1
先按边权从大到小排序
如图就是一棵kruskal重构树,方点为新建出的节点,圆点是原图中的点,方点的点权即为边权。
原图中每个节点都是这棵树的叶子节点
这棵树向上走是递减的(如果从小到大排序就是递增的)
x与y点的lca代表的就是x到y路径上最小距离的最大值(如果从小到大排序就反一下)
如果要在最小生成树上求一些东西,这些新建除的点可以提供查找方向
例如从叶子向上走,找到某个节点使得这个节点即以下的点都满足点权大于k,这样就可以找到所有可以互相到达且路径上每条边不小于点对。
code:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
const int maxm=1e5+5;
int head[maxm],nt[maxm],to[maxm],cnt;
int sz[maxm],son[maxm],top[maxm],d[maxm],fa[maxm];
int val[maxm];//节点点权
int mark[maxm];
int pre[maxm];
struct Node{
int a,b,c;
}e[maxm];
bool cmp(Node a,Node b){//边权从大到小排序
return a.c>b.c;
}
int n,m,q;
void init(){
memset(head,-1,sizeof head);
memset(mark,0,sizeof mark);
for(int i=1;i<maxm;i++){
pre[i]=i;
}
cnt=1;
}
void add(int x,int y){
cnt++;nt[cnt]=head[x];head[x]=cnt;to[cnt]=y;
}
void dfs1(int x){
sz[x]=1;
mark[x]=1;
d[x]=d[fa[x]]+1;
for(int i=head[x];i!=-1;i=nt[i]){
int v=to[i];
if(v==fa[x])continue;
fa[v]=x;
dfs1(v);
sz[x]+=sz[v];
if(sz[son[x]]<sz[v]){
son[x]=v;
}
}
}
void dfs2(int x,int tp){//
top[x]=tp;
if(son[x]){
dfs2(son[x],tp);
}
for(int i=head[x];i!=-1;i=nt[i]){
int v=to[i];
if(v==fa[x]||v==son[x])continue;
dfs2(v,v);
}
}
int ffind(int x){
return pre[x]==x?x:pre[x]=ffind(pre[x]);
}
void kruskal(){
init();
sort(e+1,e+1+m,cmp);
for(int i=1;i<=m;i++){
int x=ffind(e[i].a);
int y=ffind(e[i].b);
if(x!=y){
val[++n]=e[i].c;
pre[n]=pre[x]=pre[y]=n;//cnt为根
add(x,n);
add(n,x);
add(y,n);
add(n,y);
}
}
for(int i=1;i<=n;i++){//原图可能是森林
if(!mark[i]){
int x=ffind(i);//并查集的根就是森林中每棵树的根
fa[x]=0;
sz[0]=0;
dfs1(x);//树链剖分
dfs2(x,x);
}
}
}
int lca(int x,int y){//lca
while(top[x]!=top[y]){
if(d[top[x]]<d[top[y]])swap(x,y);
x=fa[top[x]];
}
if(d[x]>d[y])swap(x,y);
return x;
}
signed main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++){
scanf("%d%d%d",&e[i].a,&e[i].b,&e[i].c);
}
kruskal();
scanf("%d",&q);
while(q--){
int x,y;
scanf("%d%d",&x,&y);
if(ffind(x)!=ffind(y)){//如果不在同一棵树
puts("-1");
}else{
printf("%d\n",val[lca(x,y)]);
}
}
return 0;
}