欧拉定理

欧拉定理:

设m是一个正整数,a是一个整数且gcd(a,m)=1,那么aφ(m)≡1(mod m)

模n的既约剩余系:

模n的既约剩余系是由φ(n)个整数组成的集合,集合中每个数均与n互质,且任何两个元素模n不同余。

例如:{1,3,5,7}是模8的一个既约剩余系,把集合中的元素都乘3变为{3,9,15,21},这又是模8的一个既约剩余系。

欧拉定理的证明:

例如a=3,m=8
{1,3,5,7}是模8的一个既约剩余系,把集合中的元素都乘3变为{3,9,15,21},这又是模8的一个既约剩余系。
因为都是模8的既约剩余系,所以(3x1)x(3x3)x(3x5)x(3x7)≡1x3x5x7 (mod 8),式子中的x为乘号。
式子为34x(1x3x5x7)≡1x3x5x7 (mod 8),因为gcd(1x3x5x7,8)=1,所以存在模8的逆元(1x3x5x7)-1
左右同时乘上逆元消去(1x3x5x7),式子变为34=1(mod 8),也就是3φ(8)≡1(mod 8)。

利用欧拉定理求a模m的逆:

因为aφ(m)≡1(mod m),所以a*aφ(m)-1≡1(mod m),则a模m的逆为aφ(m)-1

欧拉定理解同余方程:

前提:a和m互质
对于同余方程ax≡b(mod m),
两边同时乘上a模m的逆aφ(m)-1
式子变为aφ(m)-1ax≡aφ(m)-1b(mod m)
即x≡aφ(m)-1b(mod m),可解得x=aφ(m)-1b%m

欧拉降幂(扩展欧拉定理):

在这里插入图片描述


P5091 【模板】欧拉定理

题意:

给a,b,c,求ab%c
a<=1e9,b<=102e7,c<=1e8

思路:

b很大,显然不能用正常的快速幂计算

利用扩展欧拉定理降幂之后再用快速幂计算即可

ps:
这题用十进制倍增快速幂可解:十进制倍增快速幂介绍

code:
#include<bits/stdc++.h>
using namespace std;
#define int long long
int a,c;
string b;
int gcd(int a,int b){
    return  b==0?a:gcd(b,a%b);
}
int phi(int n){
    int ans=n;
    for(int i=2;i*i<=n;i++){
        if(n%i==0){
            ans=ans/i*(i-1);
            while(n%i==0)n/=i;
        }
    }
    if(n>1)ans=ans/n*(n-1);
    return ans;
}
int ppow(int a,int b,int mod){
    a%=mod;
    int ans=1;
    while(b){
        if(b&1)ans=ans*a%mod;
        a=a*a%mod;
        b>>=1;
    }
    return ans;
}
int get(string s,int c){//计算数字串对c取模
    int ans=0;
    for(int i=0;s[i];i++){
        ans=(ans*10+s[i]-'0')%c;
    }
    return ans;
}
signed main(){
    while(cin>>a>>c>>b){
        if(gcd(a,c)==1){//如果ac互质
            int pc=phi(c);//phi(c)
            int nn=get(b,pc);//b对phi(c)取模
            cout<<ppow(a,nn,c)<<endl;
        }else{//如果不互质
            if(b.size()<=10){//如果b很小的话,可以直接用快速幂硬算
                int nn=0;
                for(int i=0;b[i];i++){
                    nn=nn*10+b[i]-'0';
                }
                cout<<ppow(a,nn,c)<<endl;
            }else{//否则必须降幂
                int pc=phi(c);
                int nn=get(b,pc)+pc;
                cout<<ppow(a,nn,c)<<endl;
            }
        }
    }
    return 0;
}

P4139 上帝与集合的正确用法

题意:

在这里插入图片描述

思路:

在这里插入图片描述
因为b中有无限多个2,所以b一定>=phi[p]

因为是递归处理,模数phi[p]会不断变小,O(log)层就会变为1,递归层数很小

code:
#include<bits/stdc++.h>
using namespace std;
const int maxm=1e7+5;
int notprime[maxm];
int prime[maxm],cnt;
int phi[maxm];
void init(){
    phi[1]=1;
    for(int i=2;i<maxm;i++){
        if(!notprime[i]){
            prime[cnt++]=i;
            phi[i]=i-1;
        }
        for(int j=0;j<cnt;j++){
            if(1ll*prime[j]*i>=maxm)break;
            notprime[prime[j]*i]=1;
            phi[prime[j]*i]=phi[i]*(i%prime[j]?prime[j]-1:prime[j]);
            if(i%prime[j]==0)break;
        }
    }
}
int ppow(int a,int b,int mod){
    int ans=1;
    while(b){
        if(b&1)ans=1ll*ans*a%mod;
        a=1ll*a*a%mod;
        b>>=1;
    }
    return ans;
}
int solve(int p){
    if(p==1)return 0;
    else return ppow(2,solve(phi[p])+phi[p],p);
}
signed main(){
    init();
    int T;
    cin>>T;
    while(T--){
        int p;
        cin>>p;
        cout<<solve(p)<<endl;
    }
    return 0;
}

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值