题意:
给定n,第i天会随机构造一个n维01向量,问这n天构造的n个n维01向量线性独立的概率
设f(n)为n的答案,要求输出f(1)异或f(2)…异或f(n)
答案对1e9+7取模。
数据范围:n<=2e7
解法:
线性代数tmd全忘了
知识记录:
1.线性独立一般是指向量的线性独立,指一组向量中任意一个向量都不能由其它几个向量线性表示。
(也叫线性无关)
2.判断向量组线性无关:
把向量组的各列向量拼成一个矩阵,求出矩阵的秩。
若秩小于向量个数,则向量组线性相关;若秩等于向量个数,则向量组线性无关。
3.向量组的秩:
用初等行变换将矩阵化为阶梯矩阵,阶梯矩阵中非零行数就是矩阵的秩。
-----分割线-----
随机构造等同于每次从所有n维01向量中随机取出一个向量
一定不能取0向量,因为0向量与其他任何向量线性相关。
所以第一次取只有2n-1种可能,设取的这个向量为a
第二次取的向量不能为0和a,那么只有2n-2种可能,设取的这个向量为b
第三次取的向量不能为0、a、b、a+b,那么只有2n-4种可能
第四次2n-8种
…
第i次2n-2i-1种
-----分割线-----
说一下2i-1是怎么来的:
n个非向量任意组合,方案数为C(n,1)+C(n,2)…C(n,n)=2n-C(n,0)=2n-1,
加上0向量就是2n。
所以是减去2i-1
-----分割线-----
那么最后总方案数就是:
转化成递推式:
发现只需要在递推的过程中维护一个2n的逆元即可
code:
#include<bits/stdc++.h>
using namespace std;
#define int long long
const int maxm=2e7+5;
const int mod=1e9+7;
int ppow(int a,int b,int mod){
int ans=1%mod;a%=mod;
while(b){
if(b&1)ans=ans*a%mod;
a=a*a%mod;
b>>=1;
}
return ans;
}
int f[maxm];
int n;
signed main(){
int inv=ppow(2,mod-2,mod);
f[1]=inv;
int temp=inv;
for(int i=2;i<maxm;i++){
temp=temp*inv%mod;
f[i]=f[i-1]*(1-temp+mod)%mod;
}
for(int i=2;i<maxm;i++){
f[i]^=f[i-1];
}
int T;cin>>T;
while(T--){
cin>>n;
cout<<f[n]<<endl;
}
return 0;
}