2020牛客多校 6B.Binary Vector(线性代数+推导)

题意:

给定n,第i天会随机构造一个n维01向量,问这n天构造的n个n维01向量线性独立的概率
设f(n)为n的答案,要求输出f(1)异或f(2)…异或f(n)
答案对1e9+7取模。

数据范围:n<=2e7

解法:

线性代数tmd全忘了

知识记录:

1.线性独立一般是指向量的线性独立,指一组向量中任意一个向量都不能由其它几个向量线性表示。
(也叫线性无关)

2.判断向量组线性无关:
把向量组的各列向量拼成一个矩阵,求出矩阵的秩。
若秩小于向量个数,则向量组线性相关;若秩等于向量个数,则向量组线性无关。

3.向量组的秩:
用初等行变换将矩阵化为阶梯矩阵,阶梯矩阵中非零行数就是矩阵的秩。

-----分割线-----

随机构造等同于每次从所有n维01向量中随机取出一个向量

一定不能取0向量,因为0向量与其他任何向量线性相关。
所以第一次取只有2n-1种可能,设取的这个向量为a

第二次取的向量不能为0和a,那么只有2n-2种可能,设取的这个向量为b

第三次取的向量不能为0、a、b、a+b,那么只有2n-4种可能

第四次2n-8种

第i次2n-2i-1

-----分割线-----

说一下2i-1是怎么来的:
n个非向量任意组合,方案数为C(n,1)+C(n,2)…C(n,n)=2n-C(n,0)=2n-1,
加上0向量就是2n
所以是减去2i-1

-----分割线-----

那么最后总方案数就是:
在这里插入图片描述
转化成递推式:
在这里插入图片描述

发现只需要在递推的过程中维护一个2n的逆元即可

code:
#include<bits/stdc++.h>
using namespace std;
#define int long long
const int maxm=2e7+5;
const int mod=1e9+7;
int ppow(int a,int b,int mod){
    int ans=1%mod;a%=mod;
    while(b){
        if(b&1)ans=ans*a%mod;
        a=a*a%mod;
        b>>=1;
    }
    return ans;
}
int f[maxm];
int n;
signed main(){
    int inv=ppow(2,mod-2,mod);
    f[1]=inv;
    int temp=inv;
    for(int i=2;i<maxm;i++){
        temp=temp*inv%mod;
        f[i]=f[i-1]*(1-temp+mod)%mod;
    }
    for(int i=2;i<maxm;i++){
        f[i]^=f[i-1];
    }
    int T;cin>>T;
    while(T--){
        cin>>n;
        cout<<f[n]<<endl;
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值