题意:
给定n和a,要求找到两个在[1,1e9]内的整数b和c,
满足an+bn=cn,如果无解则输出两个-1
数据范围:3<=a<=4e4,0<=n<=1e9
解法:
这个式子是费马大定理,当n>2的时候无正整数解,
证明者是数学家,我等凡人知道有这么个结论就行了.
n=0的时候,因为要求b,c>=1,所以也无解
n=1的时候,令b=1,c=a+1就行了
n=2的时候,式子就是勾股定理,那么就是构造勾股数
看了别人的勾股数的构造:
1.当a是奇数时:
令t=a/2,那么b=t*(t+1)*2,c=b+1
2.当a是偶数时:
令t=a/2-1,那么b=(t+2)*t,c=b+2
ps:
数据组数太多,得用scanf
code:
#include<bits/stdc++.h>
using namespace std;
signed main(){
int T;scanf("%d",&T);
while(T--){
int n,a;scanf("%d%d",&n,&a);
if(n==0||n>2){
puts("-1 -1");
}else if(n==1){
printf("%d %d\n",1,a+1);
}else{
if(a%2){
int t=a/2;
int b=t*(t+1)*2,c=b+1;
printf("%d %d\n",b,c);
}else{
int t=a/2-1;
int b=(t+2)*t,c=b+2;
printf("%d %d\n",b,c);
}
}
}
return 0;
}