费马大定理又称费马最后定理,它作为猜想被费马提出之后经历了三百年的时间最终被怀尔斯证明。现在,让我们基于对虚数单位的认识,尝试考虑关于这个证明的其它解法。
费马猜想指的是,当整数
时,方程
没有正整数解。前提是,我们先考虑
的情况,也就是我们熟悉的勾股定理的情况。此时,
显然有正整数解(比如),或者通解,
先放下整数解不谈,只考虑勾股定理成立的原因。它可以对应到几何问题上,也就是说,一个直角三角形两条直角边和斜边的关系。若不考虑整数,则在实数范围,一定可以得到三个实数,使得
但是这不是重点,重点是它作为直角三角形的代数形式,具有对应的几何意义。那么这种几何意义到底是什么呢?
我们知道相互垂直的意思就是正交关系,或者说投影为0,而虚数单位和1的关系,以及1和虚数单位的倒数的关系,也是如此。换句话说,这种关系的代数形式就是,具体写成方程,就类似于,
如图,x被替换成某个更小数值x'和虚数单位的乘积,z也是一样。但是y要保持单位为1,以实现和x方向彼此正交。看上去y>x其实是y>x',实际上x≫y(x远大于y)。
具体讨论这个虚数单位,因为虚数单位的定义为,
通常我们使用的是,
现在将带入,
这就相当于和
换了位置,也就是一条直角边和斜边换了位置。这是不对的。所以
不是正确的选择,正确的选择更为简单,就是
此处N一般来说都比较大。它还可以写成,
由此还原勾股定理的方程,
对于给定的直角三角形来说,最长边就是斜边,斜边的长度就是周期的最大长度,
而周期长度的最小值,可以用最短边长度加一来获得。我们知道三条边里面两条都是带虚数单位的,一般来说虚数单位都比较大,所以最短的y'的长度就可以确定虚数单位的最小值,另外,对于这种结构来说就足够了。于是有,
以及,
由于
所以可以获得
(需要注意,虽然看上去x'应当小于z',但这个结果是模运算的结果,周期的 重复并未计入其中,若计入周期重复的次数,x'重复的次数应当少于z'重复的次数)
可见这个条件是无论如何都可以满足的,不管是不是整数都行。
现在,让我们把方程推广到高次,
其它都不变,我们仍然可以写出,
现在的问题是,无论如何,当,上面的方程都无法写成类似
的左边两项相乘等于右边的平方,或者左边三项相乘等于右边的立方的形式进而写成,
进而根据
进行开方获得正好的x',但这是不可能的。因为这种形式,最多就是
而不会是,
因为为了避免虚数单位引入的y和z的交换,我们就只能使用虚数单位,
另外因为有多少个绝对值相等的项目才能开出对应的次方,一方面因为只有一个单位1和一个虚数单位,另一方面因为每一项都必须是
或者
的形式,两项之外更多的项显然也是写不出来的。
由此我们可以知道,为什么只在二维上存在勾股定理:为了避免边交换,只能选择作为唯一的虚数单位,于是只存在单位1和虚数单位两个绝对值相等的单位,方程就至多只有两个绝对值相等的根,所以最多两个根的方程的根的立方以及更高次方是没有意义的。再简单来说,虽然
是三元二次方程,但是引入虚数单位之后,可以消去一个元,称为二元二次方程。又因为二次方程两个解可以分别用1和虚数单位构成,二者的绝对值又相等,所以二元二次方程可以等价降解为二元一次方程。显然二元一次方程是具有无限多解的。其它三元高次方程,没有这两个条件,就算引入虚数单位之后可以消去一元,高于二次的二元高次方程也借助1和虚数单位之外的其它单位构成高次解的高次开方,高次根号里面的项目数量不够根号的次数,所以开出整数解是不可能的。
可见,基于对虚数单位的理解,再考虑这些困难的问题,显然要简单多了。
解释:为什么
可以开方得到
因为根据模运算的原则,
只是在涉及虚数单位运算的时候,我们习惯性的不写。
算法的核心在于,在模运算中,加上周期和减去周期
的效果是一样的,只是让下一个周期发生的运算,放在上一个周期中进行。在获得
之后再把周期调整回来即可。
解释:为什么可以用虚数单位来解?
无论是勾股定理,还是
都是二元及以上不定方程。二元及以上本身就已经说明了其中任何两个变量之间无相关性,也就是说,二元就意味着相互正交的两个维数。方程本身具有三个变量,第三个变量依赖另外两个变量,或者说前两个是自变量,第三个是前两个自变量的函数,所以这种三元结构,本质上是至少二维的(也可能是三维或者更高维数的)。这样就可以引入虚数单位,用虚数单位表达正交或者互不相关的概念。在勾股定理的例子中,就是假定x和y各自占据一个维数,而函数值z和x在同一个维数。事实上单从数量考虑,x和z的数量要比y大得多,而这个大得多的最小值,就是至少是y的若干倍。也就是说,看似无关的两个维数实际上被虚数单位联系在一起,虚数单位虽然可以超级大,但也可以不那么大。看懂了相继两个维数(等价于两个互不相关的自变量)的本质并不是真的互不相关,我们就可以把三元二次的不定方程用虚数单位的视角消去一元,变成二元二次。较低维数的那个自变量就变成了单位1,或者某个大于1的常数。既然两个相继的维数不是真的互不相关,那么无限多间隔相继的维数也一定不是真的互不相关,所以实际上两个变量终究还是相关的,这就是可以消去一元的原因:互不相关是表象的不是本质的,在特定的虚数单位前提下,相关性总是存在的,实在不行的话,我们可以根据模运算的法则自己创造两者的相关性。虽然说这样并不保证得到整数,但在这一步上我们并不需要保证得到整数,因为后续推导我们会发现,不管是不是整数,后面的过程都无法提供有效的因式分解结果,或者说,看上去像是一个数的几次方的多项式乘积形式,也就是说,不只是没有整数解,有理数解也没有(但可能有实数解)。
这个解法的最核心内容就是对维数的理解:我们先前认为互不相关或者投影为0的两个维数,实际上投影不为0,只是非常小,小于虚数单位的倒数。这个解析几何上的理解映射到纯粹的代数运算上,就是两个互不相关的变量并不是真的互不相关,而是可以存在于两个连续或者不连续的相继的维数上。这就是消元得以实现的根据。其它的计算过程并不重要,正如没有有理数解就肯定没有整数解,是不言自明的。