hdu5833 Zhu and 772002(高斯消元解异或方程组)

题意:

给定长度为n的序列a,保证每个元素的最大质因子不超过2000。
问有多少种非空下标集合,满足集合内所有下标所对应的数的乘积是完全平方数。、
答案对1e9+7取模

数据范围:n<=300,a(i)<=1e18

解法:

先预处理出2000以内的所有质数,
构造异或方程组(如果第x个数中质因子y的指数是奇数,那么a([y][x]=1),
每个数都是一个列向量,
计算出自由元数量cnt,那么答案就是2cnt-1,减1是为了减去空集。

ps:
套了高斯消元异或方程组的板子求自由元数量(对板子有删减)

code:
#include<bits/stdc++.h>
using namespace std;
#define int long long
const int maxm=3e5+5;
const int mod=1e9+7;
int prime[maxm],cnt;
int a[333][333];
int n;
//
int Gauss(int m,int n){//m为行数,n为列数(不含常数列)
    int col=0,k=0;//col为列号,k为行号
    for(;k<m&&col<n;k++,col++){
        int r=k;
        for(int i=k+1;i<m;i++){//找系数最大的列
            if(abs(a[i][col])>a[r][col])r=i;
        }
        if(a[r][col]==0){//如果一列都为0就跳过
            k--;continue;
        }
        if(r!=k)for(int i=col;i<=n;i++){//交换行
            swap(a[k][i],a[r][i]);
        }
        for(int i=k+1;i<m;i++){//消元
            if(abs(a[i][col])!=0){
                for(int j=col;j<=n;j++){
                    a[i][j]^=a[k][j];
                }
            }
        }
    }
    return n-k;//返回自由元个数
}
//
int ppow(int a,int b,int mod){
    int ans=1%mod;a%=mod;
    while(b){
        if(b&1)ans=ans*a%mod;
        a=a*a%mod;
        b>>=1;
    }
    return ans;
}
int isprime(int x){
    for(int i=2;i*i<=x;i++){
        if(x%i==0)return 0;
    }
    return 1;
}
signed main(){
    //预处理2000以内的质数
    for(int i=2;i<=2000;i++){
        if(isprime(i)){
            prime[cnt++]=i;
        }
    }
    //
    int T;cin>>T;
    int cas=1;
    while(T--){
        memset(a,0,sizeof a);
        cin>>n;
        for(int i=0;i<n;i++){
            int x;cin>>x;
            for(int j=0;j<cnt&&x>=prime[j];j++){
                int cnt=0;
                while(x%prime[j]==0){
                    x/=prime[j];
                    cnt^=1;
                }
                a[j][i]=cnt;
            }
        }
        int ans=Gauss(cnt,n);
        ans=(ppow(2,ans,mod)-1+mod)%mod;
        cout<<"Case #"<<cas++<<":"<<endl;
        cout<<ans<<endl;
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值