LeetCode 738. 单调递增的数字(数位dp解法)

题意:
给定一个非负整数 N,找出小于或等于 N 的最大的整数,同时这个整数需要满足其各个位数上的数字是单调递增。

(当且仅当每个相邻位数上的数字 x 和 y 满足 x <= y 时,我们称这个整数是单调递增的。)

数据范围:
n<=1e9
解法:
令d[len][pre]表示:
当前长度len,上一个数是pre,之后满足条件的最大值.
数位dp一下即可.
code:
#define ll long long
class Solution {
public:
    ll d[20][20];
    ll digit[20];
    ll p[20];
    ll len;
    ll dfs(ll len,ll limit,ll pre){
        if(!len)return 0;
        if(!limit&&d[len][pre]!=-1)return d[len][pre];
        ll ans=-1e9;
        //ans不能初始化为-1,否则会影响记忆化,也不能为0,因为不能让不合法情况的值为0.
        //因此初始化为一个足够小的数.
        ll ma=(limit?digit[len]:9);
        for(ll i=pre;i<=ma;i++){
            ans=max(ans,i*p[len-1]+dfs(len-1,limit&&i==ma,i));
        }
        if(!limit)d[len][pre]=ans;
        return ans;
    }
    int monotoneIncreasingDigits(int x) {
        memset(d,-1,sizeof d);
        p[0]=1;
        for(int i=1;i<=15;i++){
            p[i]=p[i-1]*10;
        }
        len=0;
        while(x){
            digit[++len]=x%10;
            x/=10;
        }
        return (int)dfs(len,1,0);
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值