题意:
给定一个非负整数 N,找出小于或等于 N 的最大的整数,同时这个整数需要满足其各个位数上的数字是单调递增。
(当且仅当每个相邻位数上的数字 x 和 y 满足 x <= y 时,我们称这个整数是单调递增的。)
数据范围:
n<=1e9
解法:
令d[len][pre]表示:
当前长度len,上一个数是pre,之后满足条件的最大值.
数位dp一下即可.
code:
#define ll long long
class Solution {
public:
ll d[20][20];
ll digit[20];
ll p[20];
ll len;
ll dfs(ll len,ll limit,ll pre){
if(!len)return 0;
if(!limit&&d[len][pre]!=-1)return d[len][pre];
ll ans=-1e9;
ll ma=(limit?digit[len]:9);
for(ll i=pre;i<=ma;i++){
ans=max(ans,i*p[len-1]+dfs(len-1,limit&&i==ma,i));
}
if(!limit)d[len][pre]=ans;
return ans;
}
int monotoneIncreasingDigits(int x) {
memset(d,-1,sizeof d);
p[0]=1;
for(int i=1;i<=15;i++){
p[i]=p[i-1]*10;
}
len=0;
while(x){
digit[++len]=x%10;
x/=10;
}
return (int)dfs(len,1,0);
}
};