题意:
解法:
由于所有木板都要被用上,因此三角形的周长是确定的,
令d[i][j][k][l]表示前i个木板,能否组成长度为j,k,l的三条边.
由于周长是固定的,因此只需要记录两条边就可以了,第三条边减一下就能算出来,
令d[i][j][k]表示前i个木板,能否组成长度为j,k的两条边.
第一维大小=n=40,第二维<=1600,第三维<=1600,O(40*1600*1600可以通过这题).
注意到三角形的每条边不能超过周长的一半,因此第二维和第三维只需要到800就行了,
那么复杂度为O(40*800*800),快了不少.
对于d[n][j][k]=1的位置,用海伦公式计算(j,k,sum-j-k)的三角形的面积,然后更新答案即可.
code:
#include<bits/stdc++.h>
#define int long long
#define PI pair<int,int>
using namespace std;
const int maxm=2e6+5;
bool d[2][888][888];
int a[maxm];
int n;
double cal(int a,int b,int c){
vector<int>x={a,b,c};
sort(x.begin(),x.end());
if(x[0]+x[1]<=x[2])return -1;//不能组成三角形.
double p=(a+b+c)/2.0;
return sqrt(p*(p-a)*(p-b)*(p-c));
}
void solve(){
cin>>n;
int sum=0;
for(int i=1;i<=n;i++){
cin>>a[i];
sum+=a[i];
}
int x=0,y=1;
for(int i=1;i<=n;i++){
d[y][a[i]][0]=1;
d[y][0][a[i]]=1;
for(int j=0;j<888;j++){
for(int k=0;k<888;k++){
if(j+a[i]<888){
d[y][j+a[i]][k]|=d[x][j][k];
}
if(k+a[i]<888){
d[y][j][k+a[i]]|=d[x][j][k];
}
}
}
swap(x,y);
}
double ans=-1;
for(int j=0;j<888;j++){
for(int k=0;k<888;k++){
if(d[y][j][k]){
ans=max(ans,cal(j,k,sum-j-k));
}
}
}
if(ans<0)cout<<-1<<endl;
else cout<<(int)(ans*100)<<endl;
}
signed main(){
ios::sync_with_stdio(0);
solve();
return 0;
}