Codeforces1891 E. Brukhovich and Exams (思维好题、implementation)

题面:

在这里插入图片描述

解法:
首先特判全1的情况,
此时答案一定是n-k.

对于非全1的情况, 一次有效操作一定能获得1的收益
(有效操作指的是能让gcd=1的相邻pair变成gcd!=1的pair)

我们考虑什么情况下才能让一次操作获得额外的收益:
1. 对于非1gcd(a[i],a[i+1])=1的连续子数组:
手玩一下容易发现一定是间隔着操作最优,
例如3 5 7 9 11变为3 0 7 0 12最优,
其中的每次操作都能获得2的收益,即其中有两次操作可有获得额外的1收益.
对于这样长度为len的区间, 能获得额外收益的次数为(len-1)/2.
2. 对于全1的子区间:
如果该区间在数组的头部或者尾部, 那么一定无法获得额外收益.
如果该区间在数组的中间部分, 那么当子区间全部被消为0时,才能获得额外的1收益.
如果子区间没有全部消为0,那么每次操作都没有额外的收益.
例如2 1 1 1 2, 操作3次后变为2 0 0 0 2, 收益为4.

因此我们有这样的一个操作策略:
先贪心的进行可以获得额外收益的操作.
(对于上述的情况2,显然先操作区间长度小的)
当无法获得额外收益时,则只进行普通的有效操作.

代码实现我是参考jiangly的代码修改的,算是比较容易看懂的写法了。
Code:
#include <bits/stdc++.h>
using namespace std;
#define int long long
#define PI pair<int, int>
const int maxm = 2e5 + 5;
int n,k;
int a[maxm];
int gcd(int a,int b){
  return b==0?a:gcd(b,a%b);
}
void solve() {
  cin>>n>>k;
  for(int i=1;i<=n;i++){
    cin>>a[i];
  }
  // 特判全部是1的情况
  int c1=0;
  for(int i=1;i<=n;i++){
    c1+=a[i]==1;
  }
  if (c1==n){
    cout<<n-k<<endl;
    return;
  }

  // 计算操作前的答案
  int ans=0;
  for(int i=2;i<=n;i++){
    if(gcd(a[i],a[i-1])==1){
      ans++;
    }
  }

  // 考虑什么情况下会有额外的收益 
  // e[i]=x表示操作x次可以获得额外1的收益
  vector<int> e;
  for(int l=1;l<=n;l++){
    if(a[l]==1)continue;
    int r=l;
    while(r+1<=n && a[r+1]!=1 && gcd(a[r],a[r+1])==1){
      r++;
    }
    // 对于非1的子区间, 其中(r-l)/2步可以获得额外收益1
    int cnt=(r-l)/2;
    while(cnt--)e.push_back(1);
    l=r;
  }
  for(int l=1;l<=n;l++){
    if(a[l]!=1)continue;
    int r=l;
    while(r+1<=n && a[r+1]==1){
      r++;
    }
    // 对于全1的子区间, 只有操作(r-l+1)步才可以获得额外收益1
    // 并且该全1的子区间不能在数组的两边, 否则没有额外收益
    if(l!=1 && r!=n){
      e.push_back(r-l+1);
    }
    l=r;
  }
  // 由于非全1的情况
  // 先做有额外收益的操作
  sort(e.begin(),e.end());
  for(auto x:e){
    // 操作x次后有额外收益1
    if(k>=x){
      // 操作x次
      k-=x;
      ans-=x;
      // 额外收益1
      ans--;
    } 
  }
  // 剩下的操作无法获得额外收益, 直接减就可以了
  ans-=min(ans,k);
  cout<<ans<<endl;
}
signed main() {
#define MULTI_CASE
  ios::sync_with_stdio(0);
  cin.tie(0);
#ifndef ONLINE_JUDGE
  freopen("../in.txt", "r", stdin);
  freopen("../out.txt", "w", stdout);
#endif
#ifdef MULTI_CASE
  int T;
  cin >> T;
  while (T--)
#endif
    solve();
  return 0;
}
官方题解:

在这里插入图片描述


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值